The nasopharynx (NP) is a reservoir for microbes associated with acute respiratory illnesses (ARI). The development of asthma is initiated during infancy, driven by airway inflammation associated with infections. Here, we report viral and bacterial community profiling of NP aspirates across a birth cohort, capturing all lower respiratory illnesses during their first year. Most infants were initially colonized with Staphylococcus or Corynebacterium before stable colonization with Alloiococcus or Moraxella, with transient incursions of Streptococcus, Moraxella or Haemophilus marking virus-associated ARIs. Our data identify the NP microbiome as a determinant for infection spread to the lower airways, severity of accompanying inflammatory symptoms, and risk for future asthma development. Early asymptomatic colonization with Streptococcus was a strong asthma predictor, and antibiotic usage disrupted asymptomatic colonization patterns.
To examine transmission dynamics of Mtb isolated from TB patients in Ho Chi Minh City, Vietnam we sequenced whole genomes of 1,635 isolates and compared these with 3,144 isolates from elsewhere. The data reveal an underlying burden of disease caused by endemic Mtb Lineage 1 associated with activation of long-term latent infection, and a three-fold higher burden associated with more recently introduced Beijing lineage and Lineage 4 Mtb strains. We find that Beijing lineage Mtb is frequently transferred between Vietnam and other countries, and detect higher levels of transmission of Beijing lineage strains within this host population than endemic Lineage 1 Mtb. Screening for parallel evolution of Beijing lineage-associated SNPs in other Mtb lineages as a signal of positive selection, we identify a mutation in the ESX-5 type VII secreted protein EsxW, which could potentially contribute to the enhanced transmission of Beijing lineage Mtb in Vietnamese and other host populations.
Repeated cycles of infection-associated lower airway inflammation drive the pathogenesis of persistent wheezing disease in children. In this study, the occurrence of acute respiratory tract illnesses (ARIs) and the nasopharyngeal microbiome (NPM) were characterized in 244 infants through their first five years of life. Through this analysis, we demonstrate that >80% of infectious events involve viral pathogens, but are accompanied by a shift in the NPM toward dominance by a small range of pathogenic bacterial genera. Unexpectedly, this change frequently precedes the detection of viral pathogens and acute symptoms. Colonization of illness-associated bacteria coupled with early allergic sensitization is associated with persistent wheeze in school-aged children, which is the hallmark of the asthma phenotype. In contrast, these bacterial genera are associated with "transient wheeze" that resolves after age 3 years in non-sensitized children. Thus, to complement early allergic sensitization, monitoring NPM composition may enable early detection and intervention in high-risk children.
ObjectiveAlthough counting of circulating tumour cells (CTC) has attracted a broad interest as potential markers of tumour progression and treatment response, the lack of functional characterisation of these cells had become a bottleneck in taking these observations to the clinic. Our objective was to culture these cells in order to understand them and exploit their therapeutic potential to the full.DesignHere, hypothesising that some CTC potentially have cancer stem cell (CSC) phenotype, we generated several CTC lines from the blood of patients with advanced metastatic colorectal cancer (CRC) based on their self-renewal abilities. Multiple standard tests were then employed to characterise these cells.ResultsOur CTC lines self-renew, express CSC markers and have multilineage differentiation ability, both in vitro and in vivo. Patient-derived CTC lines are tumorigenic in subcutaneous xenografts and are also able to colonise the liver after intrasplenic injection. RNA sequencing analyses strikingly demonstrate that drug metabolising pathways represent the most upregulated feature among CTC lines in comparison with primary CRC cells grown under similar conditions. This result is corroborated by the high resistance of the CTC lines to conventional cytotoxic compounds.ConclusionsTaken together, our results directly demonstrate the existence of patient-derived colorectal CTCs that bear all the functional attributes of CSCs. The CTC culture model described here is simple and takes <1 month from blood collection to drug testing, therefore, routine clinical application could facilitate access to personalised medicine.Clinical Trial RegistrationClinicalTrial.gov NCT01577511.
Heat shock protein 70 (HSP70) plays a major role in immune responses. Polymorphisms within the gene have been associated with development of septic shock. This study refines the region of the HSP70 gene associated with development of septic shock and confirms its functionality. Subjects (n = 31) were grouped into one of three haplotypes based on their HSPA1B-179C>T and HSPA1B1267A>G genotypes. Mononuclear cells from these subjects were stimulated with heat-killed bacteria (10(7 )colony-forming units/mL Escherichia coli or Streptococcus pneumoniae) for 8 and 21 h. HSP70 and tumour necrosis factor (TNF) mRNA and protein levels were measured by reverse transcriptase-polymerase chain reaction and ELISA, respectively. The HSPA1B-179*C:1267*A haplotype was associated with significantly lower levels of HSPA1B mRNA and protein and higher production of TNF mRNA and protein compared to the other haplotypes. Induction of HSP70 was TNF independent. These results suggest that the HSPA1B-179C>T:1267A>G haplotype is functional and may explain the association of the HSP70 gene with development of septic shock.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.