Highlights d Gut microbe formed phenylacetyl glutamine (PAGln) contributes to cardiac disease d Microbial porA and fldH impact host PAGln levels, platelet function, and thrombosis d PAGln transmits cellular responses via the a2A, a2B, and b2 adrenergic receptors d b blocker therapy attenuates PAGln-induced heightened thrombosis risk
Choline is a water-soluble nutrient essential for human life. Gut microbial metabolism of choline results in the production of trimethylamine (TMA), which upon absorption by the host is converted in the liver to trimethylamine-N-oxide (TMAO). Recent studies revealed that TMAO exacerbates atherosclerosis in mice and positively correlates with the severity of this disease in humans. However, which microbes contribute to TMA production in the human gut, the extent to which host factors (e.g., genotype) and diet affect TMA production and colonization of these microbes, and the effects TMA-producing microbes have on the bioavailability of dietary choline remain largely unknown. We screened a collection of 79 sequenced human intestinal isolates encompassing the major phyla found in the human gut and identified nine strains capable of producing TMA from choline in vitro. Gnotobiotic mouse studies showed that TMAO accumulates in the serum of animals colonized with TMA-producing species, but not in the serum of animals colonized with intestinal isolates that do not generate TMA from choline in vitro. Remarkably, low levels of colonization by TMA-producing bacteria significantly reduced choline levels available to the host. This effect was more pronounced as the abundance of TMA-producing bacteria increased. Our findings provide a framework for designing strategies aimed at changing the representation or activity of TMA-producing bacteria in the human gut and suggest that the TMA-producing status of the gut microbiota should be considered when making recommendations about choline intake requirements for humans.
Summary
Histone-modifying enzymes regulate transcription and are sensitive to availability of endogenous small-molecule metabolites, allowing chromatin to respond to changes in environment. The gut microbiota produces a myriad of metabolites that affect host physiology and susceptibility to disease, however the underlying molecular events remain largely unknown. Here we demonstrate that microbial colonization regulates global histone acetylation and methylation in multiple host tissues in a diet-dependent manner: consumption of a “Western-type” diet prevents many of the microbiota-dependent chromatin changes that occur in a polysaccharide rich diet. Finally, we demonstrate that supplementation of germ-free mice with short-chain fatty acids, major products of gut bacterial fermentation, is sufficient to recapitulate chromatin modification states and transcriptional responses of colonization on host epigenetic programming. These findings have profound implications for understanding the complex functional interactions between diet, gut microbiota, and host health.
Humans with metabolic and inflammatory diseases frequently harbor lower levels of butyrate-producing bacteria in their gut. However, it is not known whether variation in the levels of these organisms is causally linked with disease development and whether diet modifies the impact of these bacteria on health. Here we show that prominent gut-associated butyrate-producing bacteria species (
Roseburia
sp.) is inversely correlated with atherosclerotic lesion development in a genetically diverse mouse population. We use germ-free
apolipoprotein E
-deficient mice colonized with synthetic microbial communities that differ in their capacity to generate butyrate to demonstrate that
Roseburia intestinalis
interacts with dietary plant polysaccharides to (i) impact gene expression in the intestine, directing metabolism away from glycolysis and toward fatty acid utilization, (ii) lower systemic inflammation and (iii) ameliorate atherosclerosis. Furthermore, intestinal administration of butyrate reduces endotoxemia and atherosclerosis development. Altogether, our results illustrate how modifiable diet-by-microbiota interactions impact cardiovascular disease, and suggest that interventions aimed at increasing the representation of butyrate-producing bacteria may provide protection against atherosclerosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.