The mortality rate increases when peak oxygen uptake is less than 5 metabolic equivalents, and peak oxygen uptake correlates with knee extensor muscle strength. This study aimed to determine the knee extensor muscle strength at peak oxygen uptake corresponding to 5 metabolic equivalents. [Participants and Methods] We enrolled 45 consecutive patients (29 males and 16 females; average age, 63.6 ± 13.7 years) with heart disease receiving outpatient rehabilitation with us. We performed cardiopulmonary exercise testing with a bicycle ergometer to measure peak oxygen uptake. We investigated the relationship between peak oxygen uptake and isometric knee extensor muscle strength divided by the body weight (kgf/kg). The cutoff value for knee extensor muscle strength with peak oxygen uptake corresponding to 5 metabolic equivalents was calculated. [Results] Knee extensor muscle strength was significantly positively associated with peak oxygen uptake. The cutoff value for knee extensor muscle strength at peak oxygen uptake corresponding to 5 metabolic equivalents was 0.46 kgf/kg. [Conclusion] In this study, the cutoff value for knee extensor muscle strength for achieving peak oxygen uptake corresponding to 5 metabolic equivalents in patients with heart disease was 0.46kgf/kg.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.