This study aims to guide a method for assessment of brittle fracture performance of a multi-planar welded pipe structure that will be adopted as substructure of an extremely large-scale infrared ray telescope (Thirty Meter Telescope, TMT). In this structure, the brittle fracture from narrow part of welds between pipes that include a crack like welding defect can most likely occur under large-scale seismic load at a minimum service temperature (around -15°C). The tensile fracture testing for a "narrow-weld joint specimen" that has a crack in coarse-grained heat affected zone (CGHAZ) of final welding pass is conducted, and the brittle fracture occurred from the CGHAZ at a temperature 40°C lower than the service temperature. This test temperature is employed assuming a fracture toughness deterioration due to the large scale seismic loading. The fracture load is predicted based on the Weibull stress concept, where the Critical Weibull stress distribution of the CGHAZ is identified from testing and FE-analysis conducted for standard fracture toughness specimens at -30°C. Predicted results taking ductile crack growth into account show a good agreement with the experimental results. This result implies that the Weibull stress concept can be applicable for brittle fracture assessment of the "narrow-weld joint specimen" where a notch is located in the CGHAZ irrespective of temperature as long as brittle fracture occurs. Namely, it is expected that the Weibull stress concept is applied for fracture assessment of a multi-layer welded pipe structure subjected to large-scale seismic loading.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.