Relaxor-ferroelectric vinylidene fluoride (VDF)-based terpolymers have attracted increased attention for industrial applications because of their large dielectric constants, low voltage operation for nonvolatile memory, and energy storage capabilities. However, the origin of the relaxor ferroelectricity of VDF-based terpolymers is still under investigation. Here, we investigate the ferroelectric behaviour of thin films of terpolymers of VDF, trifluoroethylene (TrFE), and chlorofluoroethylene (CFE) (P(VDF-TrFE-CFE)) and terpolymers of VDF, TrFE, and chlorotrifluoroethylene (CTFE) (P(VDF-TrFE-CTFE)) using switching current – electric field (I-E) loop measurements. I-E loop measurements have substantial advantages because they directly provide information regarding the independent switching behaviour of dipoles. We show that the I-E loops of P(VDF-TrFE-CFE) are the summation of three pairs of Gaussian peak functions. Moreover, we provide definite proof of the presence of double hysteresis loop-like antiferroelectric behaviour and relaxor-ferroelectricity in the nanodomains of the dipoles when applying positive or negative sinusoidal electric fields to the sample films.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.