Outlier detection of semiconductor devices is important since manufacturing variation is inherently inevitable. In order to properly detect outliers, it is necessary to consider the discrepancy from underlying trend. Conventional methods are insufficient as they cannot track spatial changes of the trend. This study proposes an adaptive outlier detection using Gaussian process regression (GPR) with Student-t likelihood, which captures a gradual spatial change of characteristic variation. According to the credible interval of the GPR posterior distribution, the devices having excessively large deviations against the underlying trend are detected. The proposed methodology is validated by the experiments using a commercial SiC wafer and simulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.