Natural attenuation of Mn(II) was observed inside the metal refinery wastewater pipeline, accompanying dark brown-colored mineralization (mostly MnIVO2 with some MnIII2O3 and Fe2O3) on the inner pipe surface. The Mn-deposit hosted the bacterial community comprised of Hyphomicrobium sp. (22.1%), Magnetospirillum sp. (3.2%), Geobacter sp. (0.3%), Bacillus sp. (0.18%), Pseudomonas sp. (0.03%), and non-metal-metabolizing bacteria (74.2%). Culture enrichment of the Mn-deposit led to the isolation of a new heterotrophic Mn(II)-oxidizer Pseudomonas sp. SK3, with its closest relative Ps. resinovorans (with 98.4% 16S rRNA gene sequence identity), which was previously unknown as an Mn(II)-oxidizer. Oxidation of up to 100 mg/L Mn(II) was readily initiated and completed by isolate SK3, even in the presence of high contents of MgSO4 (a typical solute in metal refinery wastewaters). Additional Cu(II) facilitated Mn(II) oxidation by isolate SK3 (implying the involvement of multicopper oxidase enzyme), allowing a 2-fold greater Mn removal rate, compared to the well-studied Mn(II)-oxidizer Ps. putida MnB1. Poorly crystalline biogenic birnessite was formed by isolate SK3 via one-electron transfer oxidation, gradually raising the Mn AOS (average oxidation state) to 3.80 in 72 h. Together with its efficient in vitro Mn(II) oxidation behavior, a high Mn AOS level of 3.75 was observed with the pipeline Mn-deposit sample collected in situ. The overall results, including the microbial community structure analysis of the pipeline sample, suggest that the natural Mn(II) attenuation phenomenon was characterized by robust in situ activity of Mn(II) oxidizers (including strain SK3) for continuous generation of Mn(IV). This likely synergistically facilitated chemical Mn(II)/Mn(IV) synproportionation for effective Mn removal in the complex ecosystem established in this artificial pipeline structure. The potential utility of isolate SK3 is illustrated for further industrial application in metal refinery wastewater treatment processes.
Overcoming the slow-leaching kinetics of refractory primary copper sulfides is crucial to secure future copper sources. Here, the effect of carbon was investigated as a catalyst for a bioleaching reaction. First, the mechanism of carbon-assisted bioleaching was elucidated using the model chalcopyrite mineral, under specified low-redox potentials, by considering the concept of Enormal. The carbon catalyst effectively controlled the Eh level in bioleaching liquors, which would otherwise exceed its optimal range (0 ≤ Enormal ≤ 1) due to active regeneration of Fe3+ by microbes. Additionally, Enormal of ~0.3 was shown to maximize the carbon-assisted bioleaching of the model chalcopyrite mineral. Secondly, carbon-assisted bioleaching was tested for three types of chalcopyrite/enargite-bearing complex concentrates. A trend was found that the optimal Eh level for a maximum Cu solubilization increases in response to the decreasing chalcopyrite/enargite ratio in the concentrate: When chalcopyrite dominates over enargite, the optimal Eh was found to satisfy 0 ≤ Enormal ≤ 1. As enargite becomes more abundant than chalcopyrite, the optimal Eh for the greatest Cu dissolution was shifted to higher values. Overall, modifying the Eh level by adjusting AC doses to maximize Cu solubilization from the concentrate of complex mineralogy was shown to be useful.
There is a growing interest in the use of Mn (II)-oxidizing bacteria to treat Mn-containing metal refinery wastewaters instead of using conventional chemical approaches since the former could reduce the cost of alkaline agents and oxidants to remove Mn (II) as Mn oxides at alkaline pH. The Mn level was found naturally dropped in the industrial metal refinery wastewater treatment system, where the formation of Mn-enriched sludge was apparent. This observation motived us to investigate the possible involvement of microbially mediated reactions. From the sludge sample, Pseudomonas sp. strain SK3 was successfully isolated and tested for its Mn (II)-oxidation characteristics. Strain SK3 completely removed 100 ppm Mn (II) within 42 hours as birnessite ((Na,Ca,K)0.6(MnIV, MnIII)2O4·1.5H2O) under optimized conditions. Copper ions were found to be an important factor in promoting Mn (II) oxidation. Changes in the Mn (IV)/Mn (III) ratio during bacterial Mn (II)-oxidation indicated the involvement of 2-step one-electron transfer reactions in the formation of biogenic birnessite with Mn (III) as intermediate. Characteristics of strain SK3 were compared with those of a well-known Mn (II)-oxidizing bacterium, Pseudomonas putida strain MnB1. Strain SK3 displayed more robust Mn (II) oxidation capabilities under several severe conditions, showing its ideal characteristics for use in the industrial water treatment process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.