We describe the detailed sedimentary characteristics of a tsunami deposit associated with the 2011 Tohoku-oki tsunami in Hasunuma, a site on the Kujukuri coastal plain, Japan. The thick tsunami deposit was limited to within 350 m from the coastline whereas the inundation area extended about 1 km from the coastline. The tsunami deposit was sampled by excavation at 29 locations along three transects and studied using peels, soft-X imaging and grain-size analysis. The deposit covers the pre-existing soil and reached a maximum measured thickness of 35 cm. It consists mainly of well-sorted medium to fine sand. On the basis of sedimentary structures and changes in grain size, we divided the tsunami deposit into several sedimentary units, which may correspond to multiple inundation flows. The numbers of units and their sedimentary features vary among the three transects, despite the similar topography. This variation implies a considerable influence of local effects such as elevation, vegetation, microtopography, and distance from footpaths, on the tsunami-related sedimentation.
The Northern Miyagi earthquake (Mj 6.4) on 26 July, 2003, was a shallow crustal earthquake produced by high-angle reverse faulting. To construct a realistic geologic model for this fault system from depth to the surface, seismic reflection profiling was carried out across the northern part of the source fault of this earthquake. The common mid-point seismic reflection data were acquired using a vibrator truck along a 12 km-long seismic line. The obtained seismic profile portrays a Miocene half-graben bounded by a west-dipping fault. Consistent with gravity anomaly data, the maximum thickness of the basin fill probably reaches 3 km. From the regional geology, this basin-bounding normal fault forms the eastern edge of the northern Honshu rift system and was produced by rapid extension during 17-15 Ma. The deeper extension of the fault revealed by seismic profiling coincides with the planar distribution of aftershocks. The hypocentral distribution of the aftershocks shows a concentration on a plane dipping 55 degrees to the west with listric geometry. Thus, the basin inversion has been performed using the same fault; the 2003 Northern Miyagi earthquake was generated by fault reactivation of a Miocene normal fault.
The 2016 Kumamoto earthquake sequence was a rare event worldwide in that the surface ruptures associated with the largest foreshock (Mj 6.5) of 21:26 (JST), 14 April ruptured again during the mainshock (Mj 7.3) of 01:25 (JST), 16 April. The 14 April Mj 6.5 earthquake produced 6-km-long surface ruptures along the central portion of the Futagawa-Hinagu fault zone (FHFZ). The mainshock produced 31-km-long surface ruptures along the central to northeastern part of the FHFZ. Field observations and eyewitness accounts documented that the offsets of the ruptures associated with the 14 April foreshock became larger after the 16 April mainshock, suggesting that the same portion of the fault ruptured to the surface twice in the Kumamoto earthquake sequence. The 6-km-long surface ruptures associated with the largest foreshock are located near a geometric bend of the FHFZ characterized by ~50° change in strike. The epicenter of the mainshock is also located near the bend. These observations imply that the Kumamoto earthquake sequence was initiated due to a stress concentration on the bend of the FHFZ, and the mainshock was initiated approximately at the same place about 28 h after the largest foreshock. This foreshock/mainshock sequence of the Kumamoto earthquake is not successive events on the adjacent different fault zones, because the 6-km-long surface ruptures of the largest foreshock are part of the 31-km-long surface ruptures of the mainshock.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.