Small angle neutron scattering studies have been carried out on cellulose fibers from ramie and Populus maximowicii (cotton wood). Labile hydrogen atoms were replaced by deuterium atoms, in water-accessible disordered regions of the fibers, to increase the neutron scattering contrast between the disordered and crystalline regions. A meridional Bragg reflection, corresponding to a longitudinal periodicity of 150 nm, was observed when scattering collected from hydrogenated and deuterated dry ramie fibers was subtracted. No Bragg reflection was observed with the cotton wood fibers, probably because of lower orientation of the microfibrils in the cell wall. The ramie fibers were then subjected to electron microscopy, acid hydrolysis, gel permeation chromatography, and viscosity studies. The leveling off degree of polymerization (LODP) of the hydrolyzed samples matched exactly the periodicity observed in the diffraction studies. The weight loss related to the LODP was only about 1.5%, and thus, the microfibrils can be considered to have 4-5 disordered residues every 300 residues.
Covalent linkages between wall polysaccharides and lignin, especially linkage between cellulose and lignin were discussed by carboxymethylation technique of whole cell walls of coniferous and nonconiferous woods. Hydroxyl groups of plant cell walls polysaccharides were highly substituted, but not those of lignin by carboxymethyl groups under the used conditions, and separated into water-soluble and insoluble fractions by water extraction. Carboxymethylated wall polysaccharides linked covalently with lignin were distributed into the water-insoluble fractions. Composition of carboxymethylated sugar residues in the both fractions was analyzed quantitatively by 1H NMR spectroscopy after hydrolyzation with D2SO4 in D2O. More than half of cellulose linked covalently with lignin in coniferous wood, but only one-sixth of cellulose was involved in the linkage in nonconiferous wood. The major noncellulosic wall polysaccharides of coniferous wood also linked significantly with lignin. On the other hand, noncellulosic wall polysaccharides of nonconiferous wood were involved slightly in the covalent linkage with lignin. The situation of linkage between wall polysaccharides containing cellulose and lignin was visualized by scanning electron micrographs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.