Abstract. This paper deals with Gause-type predator-prey models with a nonsmooth prey growth rate. Our models have a unique positive equilibrium and are under the influence of an Allee effect. A necessary and sufficient condition is given for the existence of homoclinic orbits whose α-and ω-limit sets are the positive equilibrium. The argument used here is based on some results of a system of Liénard type. The relation between homoclinic orbits and the Allee effect is clarified. A simple example is included to illustrate the main result. Some global phase portraits are also attached.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.