The heat shock protein 70 (Hsp70) chaperone system participates in protein folding and quality control of unfolded proteins. To examine the roles of co-chaperones in the rice Hsp70 chaperone system in the endoplasmic reticulum (ER), the functions of six ER-resident J-proteins (OsP58A, OsP58B, OsERdj2, OsERdj3A, OsERdj3B, and OsERdj7) in rice were investigated. The expression of OsP58B, OsERdj3A, and OsERdj3B was predominantly up-regulated in roots subjected to ER stress. This response was mediated by signalling through ATF6 orthologues such as OsbZIP39 and OsbZIP60, but not through the IRE1/OsbZIP50 pathway. A co-immunoprecipitation assay demonstrated that OsP58A, OsP58B, and OsERdj3B preferentially interact with the major OsBiP, OsBiP1, while OsERdj3A interacts preferentially with OsBiP5, suggesting that there are different affinities between OsBiPs and J-proteins. In the endosperm tissue, OsP58A, OsP58B, and OsERdj2 were mainly localized in the ER, whereas OsERdj2 was localized around the outer surfaces of ER-derived protein bodies (PB-Is). Furthermore, OsERdj3A was not expressed in wild-type seeds but was up-regulated in transgenic seeds accumulating human interleukin-7 (hIL-7). Since ERdj3A–green fluorescent protein (GFP) was also detected in vacuoles of callus cells under ER stress conditions, OsERdj3A is a bona fide vacuole-localized protein. OsP58A, OsP58B and OsERdj3A were differentially accumulated in transgenic plants expressing various recombinant proteins. These results reveal the functional diversity of the rice ER-resident Hsp70 system.
Rice seed has been used as a production platform for high value recombinant proteins. When mature human interleukin 7 (hIL-7) was expressed as a secretory protein in rice endosperm by ligating the N terminal glutelin signal peptide and the C terminal KDEL endoplasmic reticulum (ER) retention signal to the hIL-7 cytokine to improve production yield, this protein accumulated at levels visible by Coomassie Brilliant Blue staining. However, the production of this protein led not only to a severe reduction of endogenous seed storage proteins but also to a deterioration in grain quality. The appearance of aberrant grain phenotypes (such as floury and shrunken) was attributed to ER stress induced by the retention of highly aggregated unfolded hIL-7 in the ER lumen, and the expression levels of chaperones such as BiPs and PDIs were enhanced in parallel with the increase in hIL-7 levels. The activation of this ER stress response was shown to be mainly mediated by the OsIRE1-OsbZIP50 signal cascade, based on the appearance of unconventional splicing of OsbZIP50 mRNA and the induction of OsBiP4&5. Interestingly, the ER stress response could be induced by lower concentrations of hIL-7 versus other types of cytokines such as IL-1b, IL-4, IL-10, and IL-18. Furthermore, several ubiquitin 26S proteasome-related genes implicated in ER-associated degradation were upregulated by hIL-7 production. These results suggest that severe detrimental effects on grain properties were caused by proteo-toxicity induced by unfolded hIL-7 aggregates in the ER, resulting in the triggering of ER stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.