Protein kinase C (PKC) plays a prominent role in immune signaling. To elucidate the signal transduction in a respiratory burst and isoform-specific function of PKC during FcγR-mediated phagocytosis, we used live, digital fluorescence imaging of mouse microglial cells expressing GFP-tagged molecules. βI PKC, εPKC, and diacylglycerol kinase (DGK) β dynamically and transiently accumulated around IgG-opsonized beads (BIgG). Moreover, the accumulation of p47phox, an essential cytosolic component of NADPH oxidase and a substrate for βI PKC, at the phagosomal cup/phagosome was apparent during BIgG ingestion. Superoxide (O2−) production was profoundly inhibited by Gö6976, a cPKC inhibitor, and dramatically increased by the DGK inhibitor, R59949. Ultrastructural analysis revealed that BIgG induced O2− production at the phagosome but not at the intracellular granules. We conclude that activation/accumulation of βI PKC is involved in O2− production, and that O2− production is primarily initiated at the phagosomal cup/phagosome. This study also suggests that DGKβ plays a prominent role in regulation of O2− production during FcγR-mediated phagocytosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.