Multiwalled carbon nanotubes (MWCNTs) have the potential for widespread applications in engineering and materials science. However, because of their needle-like shape and high durability, concerns have been raised that MWCNTs may induce asbestos-like pathogenicity. Although recent studies have demonstrated that MWCNTs induce various types of reactivities, the physicochemical features of MWCNTs that determine their cytotoxicity and carcinogenicity in mesothelial cells remain unclear. Here, we showed that the deleterious effects of nonfunctionalized MWCNTs on human mesothelial cells were associated with their diameterdependent piercing of the cell membrane. Thin MWCNTs (diameter ∼ 50 nm) with high crystallinity showed mesothelial cell membrane piercing and cytotoxicity in vitro and subsequent inflammogenicity and mesotheliomagenicity in vivo. In contrast, thick (diameter ∼ 150 nm) or tangled (diameter ∼ 2-20 nm) MWCNTs were less toxic, inflammogenic, and carcinogenic. Thin and thick MWCNTs similarly affected macrophages. Mesotheliomas induced by MWCNTs shared homozygous deletion of Cdkn2a/2b tumor suppressor genes, similar to mesotheliomas induced by asbestos. Thus, we propose that different degrees of direct mesothelial injury by thin and thick MWCNTs are responsible for the extent of inflammogenicity and carcinogenicity. This work suggests that control of the diameter of MWCNTs could reduce the potential hazard to human health. environmental health | inflammation | nanotoxicology
Human tissue inhibitor of mctalloproteinascs-I (TIMP-I), but not TlMP-2, has potent growth-promoting activity for a wide range of human and bovine cells, TLMP-1 seems to be a new cell-growth factor in serum and to stimulate the cells indcpendcntly of its inhibilory activity.Tissue inhibitor of mctalloprotcinasc (TIMP-1 and TIMP-2
CIC-DUX4 and BCOR-CCNB3 fusion-gene-associated small round cell sarcomas account for a proportion of pediatric small round cell sarcomas, but their pathological features have not been sufficiently clarified. We reviewed a large number of soft tissue tumors registered at our institution, retrieved the cases of unclassified tumors with a small round cell component, and subjected them to histopathological, immunohistochemical, and gene profile analysis. We reviewed 164 cases of unclassified tumors with a small round cell component and analyzed them by RT-PCR and FISH. Tumors positive for a specific fusion-gene were also subjected to histopathological and immunohistochemical examinations. We identified 16 cases of BCOR-CCNB3/CIC-associated (CIC-DUX4 or CIC gene rearrangement-positive) sarcomas. These included seven BCOR-CCNB3 sarcomas and nine CIC-associated sarcomas. Heterogeneous elements included a myxoid spindle cell component in three BCOR-CCNB3 sarcomas and an epithelioid cell component in two CIC-associated sarcomas (one CIC-DUX4-positive and one CIC-DUX4-negative sarcomas). Mitotic activity was low in both heterogeneous components. By immunohistochemistry, in seven BCOR-CCNB3 sarcomas expression of EMA was positive in two cases, of p63 in three, of CD56 in six, of TLE1 in seven, of NKX2.2 in two, of CCNB3 in seven, and of BCOR in six cases (one case could not be tested for BCOR). In nine cases of CIC-associated sarcoma, CD56 was expressed in five, alpha-smooth muscle actin in one, ERG in three, and CD99, WT1 and TLE1 each in eight cases. Both sarcoma types showed not only a small round cell component, but also a myxoid/epithelioid component with low mitotic activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.