BACKGROUND: Along with the surplus rice production, introduction of upland crop cultivations into newly reclaimed tidal areas has gained public attentions in terms of farming diversification and farmers income increase. However, its impacts on the surroundings have not been well studied yet, especially associated with nutrient balance from reclaimed upland cultivation. The objective of this study was to investigate water and nutrient balance during winter barley cultivation as affected different fertilization methods. METHODS AND RESULTS: TN and TP balance for three different plots treated by livestock compost, chemical fertilizer, and no application were monitored during winter green barley cultivation (2010-2011) at the NICS Kyehwa experimental field in Jeonbuk, Korea. Nutrient content in soil and pore water near soil surface appeared to increase, while sub-soil layer remained similar with no fertilization plot. Livestock compost application appeared to increase organic matter content in surface soil compared to chemical fertilization. Crop yield was the greatest with livestock compost application (10.6 t/ha) followed by chemical fertilization (6.9 t/ha) and no application (1.8 t/ha). The nitrogen uptake rate was also greater with livestock compost (52.4%) than chemical fertilizer (48.1%). Phosphorus uptake rate was much smaller (about 7.0%) compared to nitrogen. Nutrient loss by surface and subsurface runoff seemed to be minimal primarily due to small rainfall amount during the winter season. Most of the remaining nutrients, particularly phosphate seemed to be stored in soil layer. Phosphate accumulation appeared to be more phenomenal in the plot applied by livestock compost with higher phosphorus content. CONCLUSION: This study demonstrated that livestock compost application to tidal upland may increase barley crop production and also improve soil fertility by supplying organic content. However, excessive phosphorus supply with livestock compost seems likely to cause a phosphate accumulation problem, unless the nitrogen-based fertilization practice is adjusted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.