DNA barcoding of aquatic macroinvertebrates holds much promise as a tool for taxonomic research and for providing baseline reference for phylogenetic analysis and aquatic ecosystem biomonitoring. We obtained 112 novel sequences of the barcode region of the mitochondrial DNA cytochrome c oxidase subunit I gene representing 11 families, 25 genera, and 43 species of mayfly (Insecta: Ephemeroptera) from South Korea. No species shared barcode sequences and all can be identified with barcodes with a possible exception of some species. Minimum levels of interspecific genetic distances ranged from 6.7 to 32.9% (mean: 23.7%), whereas average levels of intraspecific divergence was 3.7%. The latter value was inflated by the presence of very high divergences within some taxa. In fact, approximately 33.3% (15/45) of the species included two or more haplotype clusters showing greater than 5.0% sequence divergence and some values were as high as 32.9%. Many of the species with high intraspecific divergences are para‐ or polyphyletic and represent the possibility of species complexes. Our study suggests that type or topotype specimens should be sequenced to identify accurate barcoding clusters with morphological species concepts and also to determine the status of currently synonymized species.
Food‐associated insect pests are of great economic and hygienic importance. However, their identification requires expert knowledge and excessive time. Such pests are discovered in food as body parts or immature stages, which further complicates the identification process. In this study, we constructed a DNA barcode dataset of insect pests that can be detected in food. We also tested the efficacy of these DNA barcode sequences for identifying food‐associated insect pests. A 658 bp fragment of the mitochondrial cytochrome c oxidase subunit I (COI) gene was analyzed from 55 species of food‐associated insect pests in Korea. The results indicated that this portion of the COI gene effectively discriminated >90% of the food‐associated insect pests. Mean genetic divergences among individuals belonging to one species/between species belonging to one genus of the five orders, Blattaria, Coleoptera, Hymenoptera, Lepidoptera and Diptera, were 0.59%/13.18%, 0.84%/20.10%, 0.02%/22.61%, 0.24%/3.48% and 0.17%/15.90%, respectively. In conclusion, we established the first DNA barcode dataset and confirmed its efficiency for identifying food‐associated insect pests in Korea.
Molecular phylogeny of the four Korean Ephemera species, Ephemera orientalis, E. sachalinensis, E. strigata, and E. separigata, was inferred from 630 bp sequences of the partial mitochondrial cytochrome c oxidase I (COI) gene. Results indicated that mean intraspecific sequence divergences were 0.70%, whereas mean interspecific divergences were 15.75%, and 17 samples were distinguished to four species correctly by COI sequences. The results also demonstrated that four species of Korean Ephemera assembled a monophyletic group with high support in maximum parsimony and maximum likelihood analyses. This Ephemera group was divided into two major clades of E. orientalis–E. sachalinensis and E. strigata–E. separigata. Furthermore, we demonstrated that this phylogeny explained altitudinal and habitat adaptations of Korean Ephemera species. The E. orientalis–E. sachalinensis clade, a widespread and lowland‐adapted mayfly group, retained plesiomorphic traits such as paired stripes on abdominal segments and was regarded as plesiotypic in terms of habitat adaptation, compared to the geographically more limited and upland‐adapted E. strigata–E. separigata clade.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.