Background: Glucagon-like peptide 1 agonists differ in chemical structure, duration of action and in their effects on clinical outcomes. The cardiovascular effects of once-weekly albiglutide in type 2 diabetes are unknown. Methods: We randomly assigned patients with type 2 diabetes and cardiovascular disease to the addition of once-weekly subcutaneous injection of albiglutide (30 mg to 50 mg) or matching placebo to standard care. We hypothesized that albiglutide would be noninferior to placebo for the primary outcome of first occurrence of cardiovascular death, myocardial infarction, or stroke. If noninferiority was confirmed by an upper limit of the 95% confidence interval for the hazard ratio of less than 1.30, closed-testing for superiority was prespecified. Findings: Overall, 9463 participants were followed for a median of 1.6 years. The primary composite outcome occurred in 338 of 4731 patients (7.1%; 4.6 events per 100 person-years) in the albiglutide group and in 428 of 4732 patients (9.0%; 5.9 events per 100 person-years) in the placebo group (hazard ratio, 0.78; 95% confidence interval [CI ], 0.68 to 0.90), indicating that albiglutide, was superior to placebo (P<0.0001 for noninferiority, P=0.0006 for superiority). The incidence of acute pancreatitis (albiglutide 10 patients and placebo 7 patients), pancreatic cancer (6 and 5), medullary thyroid carcinoma (0 and 0), and other serious adverse events did not differ significantly between the two groups. Interpretation: In patients with type 2 diabetes and cardiovascular disease, albiglutide was superior to placebo with respect to major adverse cardiovascular events. (Funded by GlaxoSmithKline; Harmony Outcomes ClinicalTrials.gov number, NCT02465515.) noninferiority; P = 0.06 for superiority). There seems to be variation in the results of existing trials with GLP-1 receptor agonists, which if correct, might reflect drug structure or duration of action, patients studied, duration of follow-up or other factors.
The genetic architecture of common traits, including the number, frequency, and effect sizes of inherited variants that contribute to individual risk, has been long debated. Genome-wide association studies have identified scores of common variants associated with type 2 diabetes, but in aggregate, these explain only a fraction of heritability. To test the hypothesis that lower-frequency variants explain much of the remainder, the GoT2D and T2D-GENES consortia performed whole genome sequencing in 2,657 Europeans with and without diabetes, and exome sequencing in a total of 12,940 subjects from five ancestral groups. To increase statistical power, we expanded sample size via genotyping and imputation in a further 111,548 subjects. Variants associated with type 2 diabetes after sequencing were overwhelmingly common and most fell within regions previously identified by genome-wide association studies. Comprehensive enumeration of sequence variation is necessary to identify functional alleles that provide important clues to disease pathophysiology, but large-scale sequencing does not support a major role for lower-frequency variants in predisposition to type 2 diabetes.
To further understanding of the genetic basis of type 2 diabetes (T2D) susceptibility, we aggregated published meta-analyses of genome-wide association studies (GWAS) including 26,488 cases and 83,964 controls of European, East Asian, South Asian, and Mexican and Mexican American ancestry. We observed significant excess in directional consistency of T2D risk alleles across ancestry groups, even at SNPs demonstrating only weak evidence of association. By following up the strongest signals of association from the trans-ethnic meta-analysis in an additional 21,491 cases and 55,647 controls of European ancestry, we identified seven novel T2D susceptibility loci. Furthermore, we observed considerable improvements in fine-mapping resolution of common variant association signals at several T2D susceptibility loci. These observations highlight the benefits of trans-ethnic GWAS for the discovery and characterisation of complex trait loci, and emphasize an exciting opportunity to extend insight into the genetic architecture and pathogenesis of human diseases across populations of diverse ancestry.
We carried out a multistage genome-wide association study of type 2 diabetes mellitus in Japanese individuals, with a total of 1,612 cases and 1,424 controls and 100,000 SNPs. The most significant association was obtained with SNPs in KCNQ1, and dense mapping within the gene revealed that rs2237892 in intron 15 showed the lowest Pvalue (6.7 x 10(-13), odds ratio (OR) = 1.49). The association of KCNQ1 with type 2 diabetes was replicated in populations of Korean, Chinese and European ancestry as well as in two independent Japanese populations, and meta-analysis with a total of 19,930 individuals (9,569 cases and 10,361 controls) yielded a P value of 1.7 x 10(-42) (OR = 1.40; 95% CI = 1.34-1.47) for rs2237892. Among control subjects, the risk allele of this polymorphism was associated with impairment of insulin secretion according to the homeostasis model assessment of beta-cell function or the corrected insulin response. Our data thus implicate KCNQ1 as a diabetes susceptibility gene in groups of different ancestries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.