Background: Prostate-specific membrane antigen (PSMA) is increasingly recognized as an excellent target for prostate cancer imaging and therapy. Finding compounds with a high target-to-nontarget ratio are an important challenge in the development of positron emission tomography (PET) imaging agents. In this study, we attempted to find a suitable compound from a simply-synthesized compound library. Method: 18 F-labeling was achieved in a two-step synthesis consisting of [ 18 F]fluorination of azido sulfonates followed by copper(I)-catalyzed click ligation. In vitro binding experiment and in vivo studies were carried out using isogenic PSMA+ PC3-PIP and PSMA− PC3-flu cells and 22RV1 cells. [ 125 I]MIP-1095 was used to measure the binding affinities of compounds through a competitive binding assay, and [ 18 F] DCFPyL was used for a comparative assessment of compounds. Radiation dosimetry data were obtained using OLINDA/EXM software. Results: Nine novel PSMA ligands were synthesized by the combination of three azido compounds and three terminal acetylene-containing Glu-urea-Lys compounds. Among them, compound 6f having a pyridine moiety showed a high binding affinity of 6.51 ± 0.19 nM (K i). 18 F-labeled compounds were obtained at moderate yields within 70 to 75 minutes (including high-performance liquid chromatography purification). Compound [ 18 F]6c had the lowest log P of −2.693. MicroPET/computed tomography (CT) images were acquired from 22RV1 cell xenograft mice after injecting [ 18 F]6c, [ 18 F]6f, and [ 18 F]6i. Additional microPET/CT experiments of [ 18 F]6c and [ 18 F]6f were performed using PSMA+ PC3-PIP and PSMA− PC3-flu cell-bearing mice. [ 18 F]6c was selected for further studies because it was found to have high uptake in tumors and rapid renal clearance, resulting in great tumor-to-nontumor ratios and distinct tumor images with very low background activity. Human dosimetry estimation of [ 18 F]6c using OLINDA/EXM software was calculated, resulting in an effective dose of 4.35 × 10 −3 mSv/MBq. Conclusions: [ 18 F]6c showed significant tumor uptake, a high tumor-to-nontumor ratio, and good radiation dosimetry results, suggesting further development as a potential diagnostic PET agent for prostate cancer.
Background: This study compared the effects of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) and 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA) as 64Cu-chelating agents in newly developed prostate-specific membrane antigen (PSMA) target compounds, 64Cu-cudotadipep and 64Cu-cunotadipep, on pharmacokinetics. Methods: The in vitro stability of the chelators was evaluated using human and mouse serum. In vitro PSMA-binding affinity and cell uptake were compared using human 22Rv1 cells. To evaluate specific PSMA-expressing tumor-targeting efficiency, micro-positron emission tomography (mcroPET)/computed tomography (CT) and biodistribution analysis were performed using PSMA+ PC3-PIP and PSMA− PC3-flu tumor xenografts. Results: The serum stability of DOTA- or NOTA-conjugated 64Cu-cudotadipep and 64Cu-cunotadipep was >97%. The Ki value of the NOTA derivative, cunotadipep, in the in vitro affinity binding analysis was higher (2.17 ± 0.25 nM) than that of the DOTA derivative, cudotadipep (6.75 ± 0.42 nM). The cunotadipep exhibited a higher cellular uptake (6.02 ± 0.05%/1 × 106 cells) compared with the cudotadipep (2.93 ± 0.06%/1 × 106 cells). In the biodistribution analysis and microPET/CT imaging, the 64Cu-labeled NOTA derivative, 64Cu-cunotadipep, demonstrated a greater tumor uptake and lower liver uptake than the DOTA derivative. Conclusions: This study indicates that the PSMA-targeted 64Cu-cunotadipep can be applied in clinical practice owing to its high diagnostic power for prostate cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.