The molecular mechanisms underlying angioimmunoblastic T cell lymphoma (AITL), a common type of mature T cell lymphoma of poor prognosis, are largely unknown. Here we report a frequent somatic mutation in RHOA (encoding p.Gly17Val) using exome and transcriptome sequencing of samples from individuals with AITL. Further examination of the RHOA mutation encoding p.Gly17Val in 239 lymphoma samples showed that the mutation was specific to T cell lymphoma and was absent from B cell lymphoma. We demonstrate that the RHOA mutation encoding p.Gly17Val, which was found in 53.3% (24 of 45) of the AITL cases examined, is oncogenic in nature using multiple molecular assays. Molecular modeling and docking simulations provided a structural basis for the loss of GTPase activity in the RHOA Gly17Val mutant. Our experimental data and modeling results suggest that the RHOA mutation encoding p.Gly17Val is a driver mutation in AITL. On the basis of these data and through integrated pathway analysis, we build a comprehensive signaling network for AITL oncogenesis.
We study the synchronization transition (ST) of a modified Kuramoto model on two different types of modular complex networks. It is found that the ST depends on the type of intermodular connections. For the network with decentralized (centralized) intermodular connections, the ST occurs at finite coupling constant (behaves abnormally). Such distinct features are found in the yeast protein interaction network and the Internet, respectively. Moreover, by applying the finite-size scaling analysis to an artificial network with decentralized intermodular connections, we obtain the exponent associated with the order parameter of the ST to be beta approximately 1 different from beta(MF) approximately 1/2 obtained from the scale-free network with the same degree distribution but the absence of modular structure, corresponding to the mean field value.
BackgroundDeep sequencing techniques provide a remarkable opportunity for comprehensive understanding of tumorigenesis at the molecular level. As omics studies become popular, integrative approaches need to be developed to move from a simple cataloguing of mutations and changes in gene expression to dissecting the molecular nature of carcinogenesis at the systemic level and understanding the complex networks that lead to cancer development.ResultsHere, we describe a high-throughput, multi-dimensional sequencing study of primary lung adenocarcinoma tumors and adjacent normal tissues of six Korean female never-smoker patients. Our data encompass results from exome-seq, RNA-seq, small RNA-seq, and MeDIP-seq. We identified and validated novel genetic aberrations, including 47 somatic mutations and 19 fusion transcripts. One of the fusions involves the c-RET gene, which was recently reported to form fusion genes that may function as drivers of carcinogenesis in lung cancer patients. We also characterized gene expression profiles, which we integrated with genomic aberrations and gene regulations into functional networks. The most prominent gene network module that emerged indicates that disturbances in G2/M transition and mitotic progression are causally linked to tumorigenesis in these patients. Also, results from the analysis strongly suggest that several novel microRNA-target interactions represent key regulatory elements of the gene network.ConclusionsOur study not only provides an overview of the alterations occurring in lung adenocarcinoma at multiple levels from genome to transcriptome and epigenome, but also offers a model for integrative genomics analysis and proposes potential target pathways for the control of lung adenocarcinoma.
BackgroundAnticancer therapies that target single signal transduction pathways often fail to prevent proliferation of cancer cells because of overlapping functions and cross-talk between different signaling pathways. Recent research has identified that balanced multi-component therapies might be more efficacious than highly specific single component therapies in certain cases. Ideally, synergistic combinations can provide 1) increased efficacy of the therapeutic effect 2) reduced toxicity as a result of decreased dosage providing equivalent or increased efficacy 3) the avoidance or delayed onset of drug resistance. Therefore, the interest in combinatorial drug discovery based on systems-oriented approaches has been increasing steadily in recent years.MethodologyHere we describe the development of Combinatorial Drug Assembler (CDA), a genomics and bioinformatics system, whereby using gene expression profiling, multiple signaling pathways are targeted for combinatorial drug discovery. CDA performs expression pattern matching of signaling pathway components to compare genes expressed in an input cell line (or patient sample data), with expression patterns in cell lines treated with different small molecules. Then it detects best pattern matching combinatorial drug pairs across the input gene set-related signaling pathways to detect where gene expression patterns overlap and those predicted drug pairs could likely be applied as combination therapy. We carried out in vitro validations on non-small cell lung cancer cells and triple-negative breast cancer (TNBC) cells. We found two combinatorial drug pairs that showed synergistic effect on lung cancer cells. Furthermore, we also observed that halofantrine and vinblastine were synergistic on TNBC cells.ConclusionsCDA provides a new way for rational drug combination. Together with phExplorer, CDA also provides functional insights into combinatorial drugs. CDA is freely available at http://cda.i-pharm.org.
Background: The process of drug discovery and development is time-consuming and costly, and the probability of success is low. Therefore, there is rising interest in repositioning existing drugs for new medical indications. When successful, this process reduces the risk of failure and costs associated with de novo drug development. However, in many cases, new indications of existing drugs have been found serendipitously. Thus there is a clear need for establishment of rational methods for drug repositioning. Results: In this study, we have established a database we call "PharmDB" which integrates data associated with disease indications, drug development, and associated proteins, and known interactions extracted from various established databases. To explore linkages of known drugs to diseases of interest from within PharmDB, we designed the Shared Neighborhood Scoring (SNS) algorithm. And to facilitate exploration of tripartite (Drug-Protein-Disease) network, we developed a graphical data visualization software program called phExplorer, which allows us to browse PharmDB data in an interactive and dynamic manner. We validated this knowledge-based tool kit, by identifying a potential application of a hypertension drug, benzthiazide (TBZT), to induce lung cancer cell death.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.