For 10,000 years pigs and humans have shared a close and complex relationship. From domestication to modern breeding practices, humans have shaped the genomes of domestic pigs. Here we present the assembly and analysis of the genome sequence of a female domestic Duroc pig (Sus scrofa) and a comparison with the genomes of wild and domestic pigs from Europe and Asia. Wild pigs emerged in South East Asia and subsequently spread across Eurasia. Our results reveal a deep phylogenetic split between European and Asian wild boars ~1 million years ago, and a selective sweep analysis indicates selection on genes involved in RNA processing and regulation. Genes associated with immune response and olfaction exhibit fast evolution. Pigs have the largest repertoire of functional olfactory receptor genes, reflecting the importance of smell in this scavenging animal. The pig genome sequence provides an important resource for further improvements of this important livestock species, and our identification of many putative disease-causing variants extends the potential of the pig as a biomedical model.
The shift from terrestrial to aquatic life by whales was a substantial evolutionary event. Here we report the whole-genome sequencing and de novo assembly of the minke whale genome, as well as the whole-genome sequences of three minke whales, a fin whale, a bottlenose dolphin and a finless porpoise. Our comparative genomic analysis identified an expansion in the whale lineage of gene families associated with stress-responsive proteins and anaerobic metabolism, whereas gene families related to body hair and sensory receptors were contracted. Our analysis also identified whale-specific mutations in genes encoding antioxidants and enzymes controlling blood pressure and salt concentration. Overall the whale-genome sequences exhibited distinct features that are associated with the physiological and morphological changes needed for life in an aquatic environment, marked by resistance to physiological stresses caused by a lack of oxygen, increased amounts of reactive oxygen species and high salt levels.
BackgroundInsects and animals can recognize surrounding environments by detecting thousands of chemical odorants. Olfaction is a complicated process that begins in the olfactory epithelium with the specific binding of volatile odorant molecules to dedicated olfactory receptors (ORs). OR proteins are encoded by the largest gene superfamily in the mammalian genome.ResultsWe report here the whole genome analysis of the olfactory receptor genes of S. scrofa using conserved OR gene specific motifs and known OR protein sequences from diverse species. We identified 1,301 OR related sequences from the S. scrofa genome assembly, Sscrofa10.2, including 1,113 functional OR genes and 188 pseudogenes. OR genes were located in 46 different regions on 16 pig chromosomes. We classified the ORs into 17 families, three Class I and 14 Class II families, and further grouped them into 349 subfamilies. We also identified inter- and intra-chromosomal duplications of OR genes residing on 11 chromosomes. A significant number of pig OR genes (n = 212) showed less than 60% amino acid sequence similarity to known OR genes of other species.ConclusionAs the genome assembly Sscrofa10.2 covers 99.9% of the pig genome, our analysis represents an almost complete OR gene repertoire from an individual pig genome. We show that S. scrofa has one of the largest OR repertoires, suggesting an expansion of OR genes in the swine genome. A significant number of unique OR genes in the pig genome may suggest the presence of swine specific olfactory stimulation.
BackgroundMammalian olfactory receptors (ORs) are encoded by the largest mammalian multigene family. Understanding the OR gene repertoire in the cattle genome could lead to link the effects of genetic differences in these genes to variations in olfaction in cattle.ResultsWe report here a whole genome analysis of the olfactory receptor genes of Bos taurus using conserved OR gene-specific motifs and known OR protein sequences from diverse species. Our analysis, using the current cattle genome assembly UMD 3.1 covering 99.9% of the cattle genome, shows that the cattle genome contains 1,071 OR-related sequences including 881 functional, 190 pseudo, and 352 partial OR sequences. The OR genes are located in 49 clusters on 26 cattle chromosomes. We classified them into 18 families consisting of 4 Class I and 14 Class II families and these were further grouped into 272 subfamilies. Comparative analyses of the OR genes of cattle, pigs, humans, mice, and dogs showed that 6.0% (n = 53) of functional OR cattle genes were species-specific. We also showed that significant copy number variations are present in the OR repertoire of the cattle from the analysis of 10 selected OR genes.ConclusionOur analysis revealed the almost complete OR gene repertoire from an individual cattle genome. Though the number of OR genes were lower than in pigs, the analysis of the genetic system of cattle ORs showed close similarities to that of the pig.
Alternative splicing (AS) is a mechanism by which multiple transcripts are produced from a single gene and is thought to be an important mechanism for tissue-specific expression of transcript isoforms. Here, we report a novel graphing method for transcript reconstruction and statistical prediction of tissue-specific AS. We applied three selection steps to generate the splice graph and predict the transcript isoforms: (i) a custom scoring rule for exon/intron sets, (ii) binomial statistics for selecting valid alternative splicing with a frequency of at least 1% for the predominant form and (iii) evaluation of transcript structure. We obtained 97 286 and 66 022 valid transcripts from 26 143 human and 27 741 mouse genes, respectively. In addition, we discovered 33 481 AS events for nine types of AS patterns in human. The statistical significance of tissue specificity for each gene, transcript and AS event was assessed based on EST tissue information, followed by a multiple testing correction procedure. In human, 12 711 genes, 16 016 transcripts and 1035 AS events were predicted to be tissue-specific (false discovery rate <0.01). This information on genes, transcript structures, AS events and their tissue specificities in human and mouse are freely accessible on the TISA website (http://tisa.kribb.re.kr/AGC/).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.