Epithelial sodium channel (ENaC) plays a crucial role in controlling sodium reabsorption in the kidney keeping the normal blood pressure. We previously reported that the expression of ENaC mRNA in the kidney of Dahl salt-sensitive (DS) rats was abnormally regulated by aldosterone, however it is unknown if dietary sodium affects the expression of ENaC and serum and glucocorticoid-regulated kinase 1 (SGK1), which plays an important role in ENaC activation, in DS rats. In the present study, we investigated whether dietary sodium abnormally affects the expression of ENaC and SGK1 mRNA in DS rats. DS and Dahl salt-resistant (DR) rats (8 weeks old) were divided into three different groups, respectively: (1) low sodium diet (0.005% NaCl), (2) normal sodium diet (0.3% NaCl), and (3) high sodium diet (8% NaCl). The high sodium diet for 4 weeks in DS rats elevated the systolic blood pressure, but did not in any other groups. The expression of alpha-ENaC mRNA in DS rats was abnormally increased by high sodium diet in contrast to DR rats, while it was normally increased by low sodium diet in DS rats similar to DR rats. The expression of beta- and gamma-ENaC mRNA in DS rats was also abnormally increased by high sodium diet unlike DR rats. The expression of SGK1 mRNA was elevated by high sodium diet in DS rats, but it was decreased in DR rats. These observations indicate that the expression of ENaC and SGK1 mRNA is abnormally regulated by dietary sodium in salt-sensitively hypertensive rats, and that this abnormal expression would be one of the factors causing salt-sensitive hypertension.
Epithelial Cl− secretion plays important roles in water secretion preventing bacterial/viral infection and regulation of body fluid. We previously suggested that quercetin would be a useful compound for maintaining epithelial Cl− secretion at a moderate level irrespective of cAMP-induced stimulation. However, we need a compound that stimulates epithelial Cl− secretion even under cAMP-stimulated conditions, since in some cases epithelial Cl− secretion is not large enough even under cAMP-stimulated conditions. We demonstrated that quercetin and myricetin, flavonoids, stimulated epithelial Cl− secretion under basal conditions in epithelial A6 cells. We used forskolin, which activates adenylyl cyclase increasing cytosolic cAMP concentrations, to study the effects of quercetin and myricetin on cAMP-stimulated epithelial Cl− secretion. In the presence of forskolin, quercetin diminished epithelial Cl− secretion to a level similar to that with quercetin alone without forskolin. Conversely, myricetin further stimulated epithelial Cl− secretion even under forskolin-stimulated conditions. This suggests that the action of myricetin is via a cAMP-independent pathway. Therefore, myricetin may be a potentially useful compound to increase epithelial Cl− secretion under cAMP-stimulated conditions. In conclusion, myricetin would be a useful compound for prevention from bacterial/viral infection even under conditions that the amount of water secretion driven by cAMP-stimulated epithelial Cl− secretion is insufficient.
Background/Aim: Epithelial Na+ channels (ENaC) play a crucial role in control of blood pressure by regulating renal Na+ reabsorption. Intracellular trafficking of ENaC is one of the key regulators of ENaC function, but a quantitative description of intracellular recycling of endogenously expressed ENaC is unavailable. We attempt here to provide a model for intracellular recycling after applying a protease inhibitor under hypotonic conditions. Methods: We simulated the ENaC-mediated Na+ transport in renal epithelial A6 cells measured as short-circuit currents using a four-state mathematical ENaC trafficking model. Results: We developed a four-state mathematical model of ENaC trafficking in the cytosol of renal epithelial cells that consists of: an insertion state of ENaC that can be trafficked to the apical membrane state (insertion rate); an apical membrane state of ENaC conducting Na+ across the apical membrane; a recycling state containing ENaC that are retrieved from the apical membrane state (endocytotic rate) and then to the insertion state (recycling rate) communicating with the apical membrane state or to a degradation state (degradation rate). We studied the effect of aprotinin (a protease inhibitor) blocking protease-induced cleavage of the extracellular loop of γ ENaC subunit on the rates of intracellular ENaC trafficking using the above-defined four-state mathematical model of ENaC trafficking and the recycling number relative to ENaC staying in the apical membrane. We found that aprotinin significantly reduced the insertion rate of ENaC to the apical membrane by 40%, the recycling rate of ENaC by 81%, the cumulative time of an individual ENaC staying in the apical membrane by 32%, the cumulative life-time after the first endocytosis of ENaC by 25%, and the cumulative Na+ absorption by 31%. The most interesting result of the present study is that cleavage of ENaC affects the intracellular ENaC trafficking rate and determines the residency time of ENaC, indicating that more active cleaved ENaCs stay longer at the apical membrane contributing to transcellular Na+ transport via an increase in recycling of ENaC to the apical membrane. Conclusion: The extracellular protease-induced cleavage of the extracellular loop of γ ENaC subunit increases transcellular epithelial Na+ transport by elevating the recycling rate of ENaC due to an increase in the recycling rate of ENaCs associated with increases in the insertion rate of ENaC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.