Electrical resistivities of heavily doped polyacetylene and polypyrrole exhibit a wide range of temperature variation as a function of the degree of disorder. Thermal activation behavior is found for the strongly disordered state, while a weak temperature dependence down to the mK region is found for the weakly disordered state. In the intermediate region we found the resistivity represented by a logT dependence, in a manner similar to amorphous metals. As a cause of the logT dependence, the possibility of scattering via interaction with molecular configurations possessing low-energy internal degrees of freedom is considered.
Raman spectroscopy was used to investigate the hydrogen bonding at the C(4)=O moiety of the isoalloxazine nucleus in a series of flavins and flavoproteins. Isotope effects of Raman bands confirmed that the band observed around 1,710 cm(-1) is mainly derived from C(4)=O stretching vibrational mode. A linear correlation was observed between the frequency of C(4)=O stretching and the chemical shift of 13C(4), suggesting that the data from both Raman and NMR spectroscopies reflect a common perturbation, i.e., hydrogen bonding. The maximum difference of C(4)=O frequency among flavins and flavoproteins examined is 36 cm(-1) [1,723 cm(-1) for riboflavin-binding protein (Kim, M. and Carey, P.C. (1993) J. Am. Chem. Soc. 115, 7015-7016) and 1,687 cm(-1) for the complex of medium-chain acyl-CoA dehydrogenase with acetoacetyl-CoA]; the maximum difference of 40-70 kJ/mol in the hydrogen bonding strength at the C(4)=O exists among flavoproteins. By use of an empirical linear correlation between the frequency of C=O stretching and the bond length of the C=O, it is estimated that the maximum difference in the bond length among flavoproteins treated here is ca. 0.017 A. The hydrogen bonding at the C(4)=O in medium-chain and short-chain acyl-CoA dehydrogenases becomes stronger upon complexation with substrate analogs. Since the hydrogen bonding at the C(4)=O is expected to enhance the electron-accepting capacity of the N(5) position, substrate-binding itself probably raises the reactivity of flavin, through enhancing the hydrogen bonding.
Phototropin, a blue-light photoreceptor in plants, has two FMN-binding domains named LOV1 and LOV2. We previously observed temperature-dependent FTIR spectral changes in the C=O stretching region (amide-I vibrational region of the peptide backbone) for the LOV2 domain of Adiantum phytochrome3 (phy3-LOV2), suggesting progressive structural changes in the protein moiety (Iwata, T., Nozaki, D., Tokutomi, S., Kagawa, T., Wada, M., and Kandori, H. (2003) Biochemistry 42, 8183-8191). Because FMN also possesses two C=O groups, in this article, we aimed at assigning C=O stretching vibrations of the FMN and protein by using 13C-labeling. We assigned the C(4)=O and C(2)=O stretching vibrations of FMN by using [4,10a-13C2] and [2-13C] FMNs, respectively, whereas C=O stretching vibrations of amide-I were assigned by using 13C-labeling of protein. We found that both C(4)=O and C(2)=O stretching vibrations shift to higher frequencies upon the formation of S390 at 77-295 K, suggesting that the hydrogen bonds of the C=O groups are weakened by adduct formation. Adduct formation presumably relocates the FMN chromophore apart from its hydrogen-bonding donors. Temperature-dependent amide-I bands are unequivocally assigned by separating the chromophore bands. The hydrogen bond of the peptide backbone in the loop region is weakened upon S390 formation at low temperatures, while being strengthened at room temperature. The hydrogen bond of the peptide backbone in the alpha-helix is weakened regardless of temperature. On the other hand, structural perturbation of the beta-sheet is observed only at room temperature, where the hydrogen bond is strengthened. Light-signal transduction by phy3-LOV2 must be achieved by the progressive protein structural changes initiated by the adduct formation of the FMN.
Ultrafast fluorescence quenching of flavin in flavodoxin from Megasphaera elsdenii was investigated by means of a fluorescence up-conversion method. Fluorescence lifetimes of flavodoxin from M. elsdenii were estimated to be tau(1) approximately 165 fs (0.97%) and tau(2) approximately 10 ps (0.03%). Correlation of photoinduced electron-transfer rates (k(ET)) with averaged distances (D(av)) between isoalloxazine and nearby tryptophan or tyrosine was examined and obtained an empirical equation of ln k(ET) vs D(av) by means of a nonlinear least-squares method using reported data together with flavodoxin from M. elsdenii. The values of D(av) were calculated from X-ray structures of the flavoproteins. The ln k(ET) was approximately linear at D(av) shorter than 7 A. The model free empirical equation was expressed as ln k(ET) = 29.7 + (-0.327 D(av) + 2.84 x 10(-5))/(0.698 - D(av)(2)). We also analyzed the observed values of ln k(ET) with Marcus theory, but could not obtain reasonable results. Our analysis suggests that the average distance, rather than the shortest (edge to edge) distance or interplanar angles between the aromatics rings, is the key factor in the process of the photoinduced electron transfer in these flavoproteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.