Fusobacterium nucleatum produces an abundance of hydrogen sulfide (H2S) in the oral cavity that is mediated by several enzymes. The identification and characterization of three distinct enzymes (Fn0625, Fn1055 and Fn1220) in F. nucleatum that catalyse the production of H2S from l-cysteine have been reported. In the current study, a novel enzyme involved in the production of H2S in F. nucleatum ATCC 25586, whose molecular mass had been estimated to be approximately 130 kDa, was identified by two-dimensional electrophoresis combined with MALDI-TOF MS. The enzyme, Fn1419, has previously been characterized as an l-methionine γ-lyase. SDS-PAGE and gel-filtration chromatography indicated that Fn1419 has a molecular mass of 43 kDa and forms tetramers in solution. Unlike other enzymes associated with H2S production in F. nucleatum, the quaternary structure of Fn1419 was not completely disrupted by exposure to SDS. The purified recombinant enzyme exhibited a K m of 0.32±0.02 mM and a k cat of 0.69±0.01 s−1. Based on current and published data, the enzymic activity for H2S production from l-cysteine in F. nucleatum is ranked as follows: Fn1220>Fn1055>Fn1419>Fn0625. Based on kinetic values and relative mRNA levels of the respective genes, as determined by real-time quantitative PCR, the amount of H2S produced by Fn1419 was estimated to be 1.9 % of the total H2S produced from l-cysteine in F. nucleatum ATCC 25586. In comparison, Fn1220 appeared to contribute significantly to H2S production (87.6 %).
Indole is most commonly known as a diagnostic marker and a malodorous chemorepellent. More recently, it has been recognized that indole also functions as an extracellular signaling molecule that controls bacterial physiology and virulence. The gene (tnaA) for tryptophanase, which produces indole, ammonia, and pyruvate via β-elimination of L-tryptophan, was cloned from Prevotella intermedia ATCC 25611 and recombinant TnaA was purified and enzymatically characterized. Analysis by reverse transcriptase-mediated PCR showed that the gene was not cotranscribed with flanking genes in P. intermedia. The results of gel-filtration chromatography suggested that P. intermedia TnaA forms homodimers, unlike other reported TnaA proteins. Recombinant TnaA exhibited a K(m) of 0.23 ± 0.01 mM and k(cat) of 0.45 ± 0.01 s(-1). Of 22 Prevotella species tested, detectable levels of indole were present in the culture supernatants of six, including P. intermedia. Southern hybridization showed that tnaA-positive signals were present in the genomic DNA from the six indole-producing strains, but not the other 16 strains tested. The indole-producing strains, with the exception of Prevotella micans, formed a phylogenetic cluster based on trees constructed using 16S rRNA gene sequences, which suggested that tnaA in P. micans might have been transferred from other Prevotella species relatively recently.
A third enzyme that produces hydrogen sulfide from L-cysteine was identified in Fusobacterium nucleatum subsp. nucleatum. The fn1055 gene was cloned from a cosmid library constructed with genomic DNA of F. nucleatum ATCC 25586. Despite the database annotation that the product of fn1055 is a cysteine synthase, reverse-phase HPLC revealed that no L-cysteine was produced in vitro by the purified Fn1055 protein; however, the enzyme did produce L-serine. In addition, a cysteine auxotroph, Escherichia coli NK3, transformed with a plasmid containing the fn1055 gene did not grow without cysteine, which further suggests that Fn1055 does not function as a cysteine synthase. The Michaelis-Menten kinetics (K m 50.09±0.001 mM and k cat 55.43±0.64 s "1 ) of the purified enzyme showed that the capacity of Fn1055 to produce hydrogen sulfide was between that of two other enzymes, Fn0625 and Fn1220. Incubation of Fn1055 with L-cysteine resulted in the production of hydrogen sulfide, but not of pyruvate, ammonia or lanthionine, which are all byproducts produced in addition to hydrogen sulfide when Fn0625 or Fn1220 is incubated with L-cysteine. Instead, Fn1055 produced L-serine in its reaction with L-cysteine. Fn1055 produces hydrogen sulfide from L-cysteine by a mechanism that is different from that of Fn0625 or Fn1220.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.