Novel high-κ thin composite films with excellent breakdown strength were synthesized using nonhydrolytic sol-gel processing. Organic-inorganic hybrid materials with high electronic polarizability were prepared as the matrix material to form a covalently bonded interface with the organically modified barium titanate (TBT) nanoparticles through a chemical cross-linking reaction. To enhance the dispersion stability of barium titanate (BT) nanoparticles in the matrix, the chemical nature of their surfaces was modified using diethyl 3-(trimethoxysilyl)propyl phosphonate (TMSP), which was synthesized by the Michaelis-Arbuzov reaction of chloropropyltrimethoxysilane (CPTMS) with 3-triethyl phosphate (TEP). A high degree of dispersion of the dielectric BT nanoparticles significantly improved the dielectric properties of the final composite films. Because the matrix consists of both silane and halogenated bisphenol A moieties with high electronic polarizability, adjusting the chemical composition allowed tailoring of the dielectric and film properties of the final composite materials.
A fabrication technique is developed for the preparation of metal oxide/CNT composites. An essential feature of the technique lies in the use of nonaqueous electrolyte in place of the usual aqueous electrolyte, which ensures well-dispersed CNTs without surfactants. After a "seed" is formed by electroplating on the anode, the seed is simply pulled up at a certain speed to grow a 1D CNT composite structure. The technique leads to a uniform distribution of metal oxide and a high weight fraction of CNT in the composite structure. Moreover, the conductivity of the composite is much higher than that of the CNT fibers fabricated with polymer.
A single‐walled carbon nanotube rope interconnect is fabricated by utilizing dielectrophoresis and capillary condensation. The rope connects a pair of prefabricated cantilevers with good alignment and outstanding packing density. The diameter and resistance of the rope are readily controlled by adjusting the dielectrophoresis parameters such as applied voltage and frequency. The properties of the rope, including packing density, electron transport, and maximum current density, are investigated. The maximum current density of the rope is measured to be as high as 1 × 107 A/cm2 in vacuum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.