Polyethylene terephthalate (PET) was depolymerized to monomer bis(2-hydroxyethyl) terephthalate (BHET) using excess ethylene glycol (EG) in the presence of metal oxides that were impregnated on different forms of silica support [silica nanoparticles (SNPs) or silica microparticles (SMPs)] as glycolysis catalysts. The reactions were carried out at 300 degrees C and 1.1 MPa at an EG-to-PET molar ratio of 11:1 and a catalyst-to-PET-weight ratio of 1.0% for 40-80 min. Among the four prepared catalysts (Mn3O4/SNPs, ZnO/SNPs, Mn3O4/SMPs, and ZnO/SMPs), the Mn3O4/SNPs nanocomposite had the highest monomer yield (> 90%). This high yield may be explained by the high surface area, amorphous and porous structure, and existence of numerous active sites on the nanocomposite catalyst. The BHET yield increased with time and reached the highest level where equilibrium was established between BHET and its dimer. The catalysts were characterized by their SEM, TEM, and BET surface areas, and via XRD, whereas the monomer BHET was characterized by HPLC and FT-IR. The glycolysis with the Mn3O4/SNPs nanocomposite as the glycolysis catalyst produced a maximum BHET in a short reaction time.
Zinc oxide (ZnO) and cerium oxide (CeO2) nanoparticles were deposited on the surface of preformed silica spheres with diameters ranging from 60 to 750 nm. Ultrasonic irradiation was employed to promote the deposition of the metal oxide nanoparticles on the surface of silica. Silica-supported zinc oxide or cerium oxide was used as a catalyst in the glycolysis of polyethylene terephthalate, one of the key processes in the depolymerization of polyethylene terephthalate. The effect of the support size on the catalytic activity was studied in terms of monomer yield, and the monomer concentration was analyzed via high-performance liquid chromatography (HPLC). The morphologies and surface properties of the catalysts were characterized using a scanning electron microscope, a transmission electron microscope, and a BET surface area analyzer, while the monomer was characterized via HPLC and nuclear-magnetic-resonance spectroscopy. Both the zinc oxide and cerium oxide deposited on a smaller support showed better distribution and less aggregation. The high specific surface area of the smaller support catalysts provided a large number of active sites. The highest monomer yield was obtained with a catalyst of 60-nm silica support.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.