This paper introduces three ways to determine host-guest complexation of cucurbit[7]uril (CB[7]) with homocysteine (Hcy). After preincubating Hcy and cysteine (Cys) with CB[7], Ellman's reagent (DTNB) was used to detect Hcy and Cys. Only Cys reacted with DTNB and Hcy gave a retarded color change. This suggests that the-SH group of Hcy is buried inside CB[7]. Human cystathionine γ-lyase (hCGL) decreased the level of Hcy degradation after preincubating Hcy and CB[7]. These results suggest that the amount of free Hcy available was decreased by the formation of a Hcy-CB[7] complex. The immunological signal of anti-Hcy monoclonal antibody was decreased significantly by preincubating CB[7] with Hcy. The ELISA results also show that ethanethiol group (-CH 2 CH 2 SH) of Hcy, which is an epitope of anti-Hcy monoclonal antibody, was blocked by the cavity in CB[7]. Overall, CB[7] can act as a host by binding selectively with Hcy, but not Cys. The calculated half-complexation formation concentration of CB[7] was 58.2 nmol using Ellman's protocol, 97.9 nmol using hCGL assay and 87.7 nmol using monoclonal antibody. The differing binding abilities of Hcy and Cys towards the CB[7] host may offer a simple and useful method for determining the Hcy concentration in plasma or serum.
There is a growing recognition of the significance of H2S as a biological signaling molecule involved in vascular and nervous system functions. In mammals, two enzymes in the transsulfuration pathway, cystathionine β-synthase (CBS) and cystathionine γ-lyase (CGL), are believed to be chiefly responsible for H2S biogenesis. Genetic inborn error of CGL leads to human genetic disease, cystathioninuria, by accumulating cystathionine in the body. This disease is secondarily associated with a wide range of diseases including diabetes insipidus and Down's syndrome. Although the human CGL (hCGL) overexpression is essential for the investigation of its function, structure, reaction specificity, substrate specificity, and protein-protein interactions, there is no clear report concerning optimum overexpression conditions. In this study, we report a detailed analysis of the overexpression conditions of the hCGL using a bacterial system. Maximum overexpression was obtained in conditions of low culture temperature after inducer addition, performing low aeration during overexpression, and using a low concentration inducer (0.1 mM, IPTG) for induction. Expressed hCGL was purified by His-tag affinity column chromatography and confirmed by Western blot using hCGL antibody and enzyme activity analysis. We also report that the His tag with TEV site attached protein exhibits 76% activity for α-γ elimination reaction with L-cystathionine and 88% for α-β elimination reaction with L-cysteine compared to those of wild type hCGL, respectively. His tag with TEV site attached protein also exhibits a 420 nm absorption maximum, which is attributed to the binding cofactor, pyridoxal 5'-phosphate (PLP).Key words : Overexpression, cystathionine γ-lyase, cystathioninuria, homocysteine, cysteine *Corresponding author *Tel:+82-54-478-7837, Fax:+82-54-478-7710 *E-mail : khjhee@kumoh.ac.kr †Co-first author (Both authors contributed equally to this work)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.