Perfect one‐dimensional orientation of zeolite microcrystals on glass can be obtained with very high surface coverage (see Figure), as demonstrated here. The approach, which involves covalently linking the zeolite to the glass, is highly efficient and can be extended to the assembly of zeolite crystals on other supports, such as silica, alumina, and other zeolites.
Tear glucose measurements have been suggested as a potential alternative to blood glucose monitoring for diabetic patients. While previous work has reported that there is a correlation between blood and tear glucose levels in humans, this link has not been thoroughly established and additional clinical studies are needed. Herein, we evaluate the potential of using commercial blood glucose test strips to measure glucose in tears. Of several blood glucose strips evaluated, only one brand exhibits the low detection limit required for quantitating glucose in tears. Calibration of these strips in the range of 0-100 μM glucose with an applied potential of 150 mV to the working electrode yields a sensitivity of 0.127 nA/μM and a limit of quantitation (LOQ) of 9 μM. The strips also exhibit ≤13% error (n = 3) for 25, 50, and 75 μM glucose in the presence of 10 μM acetaminophen, 100 μM ascorbic acid, and 100 μM uric acid. Measurements of glucose in tears from nine normal (nondiabetic) fasting human subjects using strips yielded glucose values within the range of 5-148 μM (mean = 47 μM, median = 43 μM), similar to those for human tears reported by others with more complex LC-MS methods. The glucometer strip method could facilitate more clinical studies to determine whether tear glucose and blood glucose levels sufficiently correlate for application to routine measurements in tears to supplement blood glucose testing. This would be especially helpful for children, adolescents, other Type 1 diabetics, and also for Type 2 diabetics who require treatment with insulin and cannot tolerate multiple finger sticks per day.
A hexagonally ordered mesoporous carbon, CMK-3, was utilized as a support for a Fischer-Tropsch catalyst. Each array of elongated pore structures with Co nanoparticles can be regarded as a nanochannel reactor. Due to the pore confinement and the hydrophobic nature of the support, this catalyst demonstrated excellent catalytic performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.