Deguelin exhibits potent apoptotic and antiangiogenic activities in a variety of transformed cells and cancer cells. Deguelin also exhibits potent tumor suppressive effects in xenograft tumor models for many human cancers. Our initial studies confirmed that deguelin disrupts ATP binding to HSP90 and consequently induces destabilization of its client proteins such as HIF-1α. Interestingly, a fluorescence probe assay revealed that deguelin and its analogues do not compete with ATP binding to the N-terminus of HSP90, unlike most HSP90 inhibitors. To determine the key parts of deguelin that contribute to its potent HSP90 inhibition, as well as its antiproliferative and antiangiogenic activities, we have established a structure-activity relationship (SAR) of deguelin. In the course of these studies, we identified a series of novel and potent HSP90 inhibitors. In particular, analogues 54 and 69, the B- and C-ring-truncated compounds, exhibited excellent antiproliferative activities with IC(50) of 140 and 490 nM in the H1299 cell line, respectively, and antiangiogenic activities in zebrafish embryos in a dose dependent manner (0.25-1.25 μM).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.