This clinical practice guideline (CPG) is the fourth edition of the Korean guideline for stroke rehabilitation, which was last updated in 2016. The development approach has been changed from a consensus-based approach to an evidence-based approach using the Grading of Recommendations Assessment Development and Evaluation (GRADE) method. This change ensures that the guidelines are based on the latest and strongest evidence available. The aim is to provide the most accurate and effective guidance to stroke rehabilitation teams, and to improve the outcomes for stroke patients in Korea. Fifty-five specialists in stroke rehabilitation and one CPG development methodology expert participated in this development. The scope of the previous clinical guidelines was very extensive, making it difficult to revise at once. Therefore, it was decided that the scope of this revised CPG would be limited to Part 1: Rehabilitation for Motor Function. The key questions were selected by considering the preferences of the target population and referring to foreign guidelines for stroke rehabilitation, and the recommendations were completed through systematic literature review and the GRADE method. The draft recommendations, which were agreed upon through an official consensus process, were refined after evaluation by a public hearing and external expert evaluation.
Robot-assisted gait training (RAGT) is a promising treatment for stroke rehabilitation. Although the coordination between the upper and lower limbs is important for locomotor training, commercially available robotics for gait training mainly focus on the restoration of lower limb function. We aimed to evaluate the feasibility and usability of complex upper and lower limb RAGT in stroke patients using the GTR-A®, end effector-type robotic device. Patients with subacute stroke (N=9) received 30-minute RAGT thrice a week for two weeks (six sessions). Functionally, the hand grip strength (HGS), Functional Ambulatory Categories, modified Barthel Index, muscle strength test sum score, Berg Balance Scale, Timed Up and Go test, and Short Physical Performance Battery were used. The heart rate and a structured questionnaire were used to evaluate cardiorespiratory fitness and the usability of RAGT. Among the nine patients, all functional parameters between the baseline and post-training were significantly improved after RAGT, except for HGS and the muscle strength test. The questionnaire’s mean scores for each domain were as follows: safety 4.40±0.35, effects 4.23±0.31, efficiency 4.22±0.77, and satisfaction 4.41±0.25. The GTR-A® is a feasible and safe robotic device for patients with gait impairment after stroke. It showed functional improvement with endurance training effects.
Objective To evaluate the feasibility and usability of cost-effective complex upper and lower limb robot-assisted gait training in patients with stroke using the GTR-A, a foot-plate based end-effector type robotic device.Methods Patients with subacute stroke (n=9) were included in this study. The enrolled patients received 30-minute robot-assisted gait training thrice a week for 2 weeks (6 sessions). The hand grip strength, functional ambulation categories, modified Barthel index, muscle strength test sum score, Berg Balance Scale, Timed Up and Go Test, and Short Physical Performance Battery were used as functional assessments. The heart rate was measured to evaluate cardiorespiratory fitness. A structured questionnaire was used to evaluate the usability of robot-assisted gait training. All the parameters were evaluated before and after the robot-assisted gait training program.Results Eight patients completed robot-assisted gait training, and all parameters of functional assessment significantly improved between baseline and posttraining, except for hand grip strength and muscle strength test score. The mean scores for each domain of the questionnaire were as follows: safety, 4.40±0.35; effects, 4.23±0.31; efficiency, 4.22±0.77; and satisfaction, 4.41±0.25.Conclusion Thus, the GTR-A is a feasible and safe robotic device for patients with gait impairment after stroke, resulting in improvement of ambulatory function and performance of activities of daily living with endurance training. Further research including various diseases and larger sample groups is necessary to verify the utility of this device.
Background Nivolumab is an immune checkpoint inhibitor that targets the programmed cell death-1 protein and is effective in treating advanced cancer. However, it is also associated with various immune-related neurological complications, including myasthenia gravis, Guillain–Barré syndrome, and demyelinating polyneuropathy. These complications can easily mimic other neurological diseases and have greatly varying therapeutic approaches depending on the underlying pathophysiology. Case presentation Here, we report a case of nivolumab-induced demyelinating peripheral polyneuropathy involving the brachial plexus in a patient with Hodgkin lymphoma. Approximately 7 months after nivolumab treatment, the patient experienced muscle weakness with a tightness and tingling sensation in the right forearm. Electrodiagnostic studies showed features of demyelinating peripheral neuropathy with right brachial plexopathy. Magnetic resonance imaging revealed thickening with a diffuse enhancement of both brachial plexuses. The patient was eventually diagnosed with nivolumab-induced demyelinating polyneuropathy involving the brachial plexus. Oral steroid therapy improved motor weakness and sensory abnormalities without aggravation. Conclusion Our study indicates the possibility of nivolumab-induced neuropathies in cases involving muscle weakness with sensory abnormalities of the upper extremity following nivolumab administration in patients with advanced cancer. Comprehensive electrodiagnostic studies and magnetic resonance imaging are helpful in the differential diagnosis of other neurological diseases. Appropriate diagnostic and therapeutic approaches may prevent further neurological deterioration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.