Highly moisture permeation resistive and transparent single layer thin films for the encapsulation of hydrogenated silicon oxynitrides (H:SiON) were deposited by plasma-enhanced chemical vapor deposition (PECVD) using silane (SiH 4 ), nitrous oxide (N 2 O), ammonia (NH 3 ), and hydrogen (H 2 ) at 100 C for applications to a topemission organic light-emitting diode (TEOLED). Addition of H 2 into the PECVD process of SiON film deposition afforded the hydrogenated SiON film, which showed not only improved optical properties such as transmittance and reflectance but also better barrier property to water permeation than PECVD SiON and even SiN x . The H:SiON film with thickness of only 80 nm exhibited water vapor transmission rate (WVTR) lower than 5 Â 10 À5 g per m 2 per day in the test conditions of 38 C and 100% humidity, where this WVTR is the measurement limit of the MOCON equipment. An additional coating of UV curable polymer enabled the H:SiON films to be flexible and to have very stable barrier property lower than 5 Â 10 À5 g per m 2 per day even after a number of 10k times bending tests at a curvature radius of 1R. The mild H:SiON film process improved the electrical properties of top-emission OLEDs without generating any dark spots. Furthermore, single H:SiON films having high water vapor barrier could maintain the original illumination features of TEOLED longer than 720 hours. These excellent properties of the H:SiON thin films originated from the structural changes of the SiON material by the introduction of hydrogen.Fig. 7 Operating images of TEOLEDs (a) without and (b) with a polymer layer, and image (c) after 720 hours shelf lifetime test without the polymer layer.This journal is
Bone homeostasis plays a major role in supporting and protecting various organs as well as a body structure by maintaining the balance of activities of the osteoblasts and osteoclasts. Unbalanced differentiation and functions of these cells result in various skeletal diseases, such as osteoporosis, osteopetrosis, and Paget’s disease. Although various synthetic nanomaterials have been developed for bone imaging and therapy through the chemical conjugation, they are associated with serious drawbacks, including heterogeneity and random orientation, in turn resulting in low efficiency. Here, we report the synthesis of bone-targeting ferritin nanoparticles for bone imaging. Ferritin, which is a globular protein composed of 24 subunits, was employed as a carrier molecule. Bone-targeting peptides that have been reported to specifically bind to osteoblast and hydroxyapatite were genetically fused to the N-terminus of the heavy subunit of human ferritin in such a way that the peptides faced outwards. Ferritin nanoparticles with fused bone-targeting peptides were also conjugated with fluorescent dyes to assess their binding ability using osteoblast imaging and a hydroxyapatite binding assay; the results showed their specific binding with osteoblasts and hydroxyapatite. Using in vivo analysis, a specific fluorescent signal from the lower limb was observed, demonstrating a highly selective affinity of the modified nanoparticles for the bone tissue. These promising results indicate a specific binding ability of the nanoscale targeting system to the bone tissue, which might potentially be used for bone disease therapy in future clinical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.