With their mechanistic novelty and
various modalities of reactivity,
transition metal unsaturated carbene (alkenylidene) complexes have
emerged as versatile intermediates for new reaction discovery. In
particular, the past decade has witnessed remarkable advances in the
chemistry of metal vinylidenes and allenylidenes, leading to the evolution
of a diverse array of new catalytic transformations that are mechanistically
distinct from those developed in the previous two decades. This review
aims to provide a survey of the recent achievements in the development
of organic reactions that make use of transition metal alkenylidenes
as catalytic intermediates and their applications to organic synthesis.
Transition metal-mediated catalysis routinely enables substrates of multiple π-systems to be efficiently coupled with various carbon nucleophiles along with simultaneous ring formation. This transformation, however, remains unexplored in connection with pericyclic processes. Reported here is a protocol for cycloalkene synthesis based on the merger of rhodium catalysis and a retro-ene reaction. The approach allows alkyne-tethered hydrazones and organoboronic acids to undergo a cascade of addition-cyclization-rearrangement reactions to provide cycloalkene products. The process is initiated by the rhodium-catalyzed addition-cyclization and completed with the allylic diazene rearrangement. The reaction can also be rendered asymmetric by using chiral diene ligands for the rhodium catalyst, whereby enantioselective addition to the C═N bond establishes the C-N stereocenter whose chirality is transferred to an allylic C-H center via suprafacial rearrangement.
Reported here is the Pd-catalyzed C-N coupling of hydrazine with (hetero)aryl chlorides and bromides to form aryl hydrazines with catalyst loadings as lowas100 ppm of Pd and KOHa sb ase.M echanistic studies revealed two catalyst resting states:a na rylpalladium(II) hydroxidea nd arylpalladium(II) chloride.T hese compounds are present in two interconnected catalytic cycles and react with hydrazine and base or hydrazine alone to give the product. The selectivity of the hydroxide complex with hydrazine to form aryl over diaryl hydrazine was lower than that of the chloride complex, as well as the catalytic reaction. In contrast, the selectivity of the chloride complex closely matched that of the catalytic reaction, indicating that the aryl hydrazine is derived from this complex. Kinetic studies showed that the coupling process occurs by rate-limiting deprotonation of ah ydrazine-bound arylpalladium(II) chloride complex to give an arylpalladium-(II) hydrazido complex.
Diaryl difluoromethanes are valuable targets for medicinal chemistry because they are bioisosteres of diaryl ethers and can function as replacements for diaryl methane, ketone, and sulfone groups. However, methods to prepare diaryl difluoromethanes are scarce, especially methods starting from abundant aryl halides. We report the Pd-catalyzed aryldifluoromethylation of aryl halides with aryldifluoromethyl trimethylsilanes (TMSCF 2 Ar). The reaction occurs when the catalyst contains a simple, but unusual, dialkylaryl phosphine ligand that promotes transmetallation of the silane. Computational studies show that reductive elimination following transmetallation occurs with a low barrier, despite the fluorine atoms on the α-carbon, due to coordination of the difluorobenzyl π-system to palladium. The co-development of a cobalt-catalyzed synthesis of the silanes broadened the scope of the process including several applications to the synthesis biologically relevant diaryl difluoromethanes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.