Though α-poly(l-lysine) (APL) has been well-studied in gene delivery, ε-poly(l-lysine) (EPL) with same repeating unit of l-lysine but different structure has been rarely investigated. This study compared various effects of their different structures in gene delivery processes. EPL showed less cytotoxicity and more proton buffering capacity for endosomal release than APL. Also, EPL/pDNA polyplexes represented higher nucleus preference than APL/pDNA polyplexes. However, EPL had weaker affinities with pDNA than APL, leading to formation of larger EPL/pDNA complexes with less compactness and successively faster decomplexation. The resultant difference of their pDNA binding affinity caused lower cellular uptake and lower transfection efficiency of EPL/pDNA complexes than APL/pDNA complexes. Thus, this study confirmed that various effects of gene delivery processes are changed by chemical structure of polymeric gene carriers. Especially, despite the low transfection efficiency of EPL-based polyplexes, the study found potentials of EPL in cytocompatibility, endosomal release, and nuclear import.
The tight binding of pDNA with a cationic polymer is the crucial requirement that prevents DNA degradation from undesired DNase attack to safely deliver the pDNA to its target site. However, cationic polymer-mediated strong gene holding limits pDNA dissociation from the gene complex, resulting in a reduction in transfection efficiency. In this study, to control the decomplexation rate of pDNA from the gene complex in a hard-to-transfect cell or an easy-to-transfect cell, either α-poly(l-lysine) (APL) or ε-poly(l-lysine) (EPL) was incorporated into branched polyethylenimine (bPEI)-based nanocomplexes (NCs). Compared to bPEI/pDNA NCs, the addition of APL or EPL formed smaller bPEI-APL/pDNA NCs with similar zeta potentials or larger bPEI-EPL/pDNA NCs with reduced zeta potentials, respectively, due to the different characteristics of the primary amines in the two poly(l-lysine)s (PLs). Interestingly, although both bPEI-APL/pDNA NCs and bPEI-EPL/pDNA NCs showed similar pDNA compactness to bPEI/pDNA NCs, the addition of APL or EPL resulted in slower or faster pDNA release, respectively, from the bPEI-PL/pDNA NCs than from the bPEI/pDNA NCs. bPEI-EPL/pDNA NCs with a decomplexation enhancer (i.e., EPL) improved the transfection efficiency (TE) in both a hard-to-transfect HepG2 cell and an easy-to-transfect HEK293 cell. However, although a decomplexation inhibitor (i.e., APL) reduced the TE of bPEI-APL/pDNA NCs in both cells, the degree of reduction in the TE could be compensated by PL-mediated enhanced nuclear delivery, particularly in HepG2 cells but not HEK293 cells, because both PLs facilitate nuclear localization of the gene complex per its cellular uptake. In conclusion, a decomplexation rate controller could be a potential factor to establish a high TE and design clinically available gene complex systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.