This paper proposes a method that automatically calibrates four cameras of an around view monitor (AVM) system in a natural driving situation. The proposed method estimates orientation angles of four cameras composing the AVM system, and assumes that their locations and intrinsic parameters are known in advance. This method utilizes lane markings because they exist in almost all on-road situations and appear across images of adjacent cameras. It starts by detecting lane markings from images captured by four cameras of the AVM system in a cost-effective manner. False lane markings are rejected by analyzing the statistical properties of the detected lane markings. Once the correct lane markings are sufficiently gathered, this method first calibrates the front and rear cameras, and then calibrates the left and right cameras with the help of the calibration results of the front and rear cameras. This two-step approach is essential because side cameras cannot be fully calibrated by themselves, due to insufficient lane marking information. After this initial calibration, this method collects corresponding lane markings appearing across images of adjacent cameras and simultaneously refines the initial calibration results of four cameras to obtain seamless AVM images. In the case of a long image sequence, this method conducts the camera calibration multiple times, and then selects the medoid as the final result to reduce computational resources and dependency on a specific place. In the experiment, the proposed method was quantitatively and qualitatively evaluated in various real driving situations and showed promising results.
In order to overcome the limitations of GNSS/INS and to keep the cost affordable for mass-produced vehicles, a precise localization system fusing the estimated vehicle positions from low-cost GNSS/INS and low-cost perception sensors is being developed. For vehicle position estimation, a perception sensor detects a road facility and uses it as a landmark. For this localization system, this paper proposes a method to detect a road sign as a landmark using a monocular camera whose cost is relatively low compared to other perception sensors. Since the inside pattern and aspect ratio of a road sign are various, the proposed method is based on the part-based approach that detects corners and combines them to detect a road sign. While the recall, precision, and processing time of the state of the art detector based on a convolutional neural network are 99.63%, 98.16%, and 4802 ms respectively, the recall, precision, and processing time of the proposed method are 97.48%, 98.78%, and 66.7 ms, respectively. The detection performance of the proposed method is as good as that of the state of the art detector and its processing time is drastically reduced to be applicable for an embedded system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.