BackgroundThe identification of target molecules is important for understanding the mechanism of “target deconvolution” in phenotypic screening and “polypharmacology” of drugs. Because conventional methods of identifying targets require time and cost, in-silico target identification has been considered an alternative solution. One of the well-known in-silico methods of identifying targets involves structure activity relationships (SARs). SARs have advantages such as low computational cost and high feasibility; however, the data dependency in the SAR approach causes imbalance of active data and ambiguity of inactive data throughout targets.ResultsWe developed a ligand-based virtual screening model comprising 1121 target SAR models built using a random forest algorithm. The performance of each target model was tested by employing the ROC curve and the mean score using an internal five-fold cross validation. Moreover, recall rates for top-k targets were calculated to assess the performance of target ranking. A benchmark model using an optimized sampling method and parameters was examined via external validation set. The result shows recall rates of 67.6% and 73.9% for top-11 (1% of the total targets) and top-33, respectively. We provide a website for users to search the top-k targets for query ligands available publicly at http://rfqsar.kaist.ac.kr.ConclusionsThe target models that we built can be used for both predicting the activity of ligands toward each target and ranking candidate targets for a query ligand using a unified scoring scheme. The scores are additionally fitted to the probability so that users can estimate how likely a ligand–target interaction is active. The user interface of our web site is user friendly and intuitive, offering useful information and cross references.Electronic supplementary materialThe online version of this article (10.1186/s12859-017-1960-x) contains supplementary material, which is available to authorized users.
In in-silico prediction for molecular binding of human genomes, promising results have been demonstrated by deep neural multi-task learning due to its strength in training tasks with imbalanced data and its ability to avoid over-fitting. Although the interrelation between tasks is known to be important for successful multi-task learning, its adverse effect has been underestimated. In this study, we used molecular interaction data of human targets from ChEMBL to train and test various multi-task and single-task networks and examined the effectiveness of multi-task learning for different compositions of targets. Targets were clustered based on sequence similarity in their binding domains and various target sets from clusters were chosen. By comparing the performance of deep neural architectures for each target set, we found that similarity within a target set is highly important for reliable multi-task learning. For a diverse target set or overall human targets, the performance of multi-task learning was lower than single-task learning, but outperformed single-task for the target set containing similar targets. From this insight, we developed Multiple Partial Multi-Task learning, which is suitable for binding prediction for human drug targets.
Motivation Improvements in next-generation sequencing have enabled genome-based diagnosis for patients with genetic diseases. However, accurate interpretation of human variants requires knowledge from a number of clinical cases. Additionally, manual analysis of each variant detected in a patient's genome requires enormous time and effort. To reduce the cost of diagnosis, various computational tools have been developed to predict the pathogenicity of human variants, but the shortage and bias of available clinical data can lead to overfitting of algorithms. Results We developed a pathogenicity predictor, 3Cnet, that uses recurrent neural networks to analyse the amino acid context of human variants. As 3Cnet is trained on simulated variants reflecting evolutionary conservation and clinical data, it can find disease-causing variants in patient genomes with 2.2 times greater sensitivity than currently available tools, more effectively discovering pathogenic variants and thereby improving diagnosis rates. Availability Codes (https://github.com/KyoungYeulLee/3Cnet/) and data (https://zenodo.org/record/4716879#.YIO-xqkzZH1) are freely available to non-commercial users. Supplementary information Supplementary data are available at Bioinformatics online.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.