Scarless genome editing of induced pluripotent stem cells (iPSCs) is crucial for the precise modeling of genetic disease. Here we present CRISPR Del/Rei, a two-step deletion-reinsertion strategy with high editing efficiency and simple PCR-based screening that generates isogenic clones in ~ 2 months. We apply our strategy to edit iPSCs at 3 loci with only rare off target editing.
DPYSL2/CRMP2 is a microtubule-stabilizing protein crucial for neurogenesis and associated with numerous psychiatric and neurodegenerative disorders. DPYSL2 has multiple RNA and protein isoforms, but few studies have differentiated between them or explored their individual functions. We previously demonstrated in HEK293 cells that a schizophrenia-associated variant in the DPYSL2 B isoform (DPYSL2-B) reduced the length of cellular projections, created a transcriptomic disturbance that captured schizophrenia etiology, and was acted upon by the mTOR pathway. In the present study, we follow up on these results by creating, to our knowledge, the first models of endogenous DPYSL2-B knockout in human induced pluripotent stem cells and excitatory glutamatergic neurons. We use CRISPR/Cas9 to specifically knock out DPYSL2-B and observe corresponding reduction of its RNA and protein. The average length of dendrites in knockout neurons was reduced up to 58% compared to controls. Transcriptome analysis reveals disruptions in pathways highly relevant to psychiatric disease including mTOR signaling, cytoskeletal dynamics, immune function, calcium signaling, and cholesterol biosynthesis. We also observed a significant enrichment of our differentially expressed genes in schizophrenia GWAS-associated loci. Our findings clarify the functions of the human DPYSL2-B isoform and confirm its involvement in molecular pathologies shared between many psychiatric diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.