The number of COVID-19 cases is continuously increasing in different countries (as of March 2020) including the Philippines. It is estimated that the basic reproductive number of COVID-19 is around 1.5 to 4. The basic reproductive number characterizes the average number of persons that a primary case can directly infect in a population full of susceptible individuals.However, there can be superspreaders that can infect more than this estimated basic reproductive number. In this study, we formulate a conceptual mathematical model on the transmission dynamics of COVID-19 between the frontliners and the general public. We assume that the general public has a reproductive number between 1.5 to 4, and frontliners (e.g. healthcare workers, customer service and retail personnel, food service crews, and transport or delivery workers) have a higher reproduction number. Our simulations show that both the frontliners and the general public should be protected or resilient against the disease. Protecting only the frontliners will not result in flattening the epidemic curve. Protecting only the general public may flatten the epidemic curve but the infection risk faced by the frontliners is still high, which may eventually affect their work. Our simple model does not consider all factors involved in COVID-19 transmission in a community, but the insights from our model results remind us of the importance of community effort in controlling the transmission of the disease. All in all, the take-home
The number of COVID-19 cases is continuously increasing in different countries including the Philippines. It is estimated that the basic reproduction number of COVID-19 is around 1.5–4 (as of May 2020). The basic reproduction number characterizes the average number of persons that a primary case can directly infect in a population full of susceptible individuals. However, there can be superspreaders that can infect more than this estimated basic reproduction number. In this study, we formulate a conceptual mathematical model on the transmission dynamics of COVID-19 between the frontliners and the general public. We assume that the general public has a reproduction number between 1.5 and 4, and frontliners (e.g. healthcare workers, customer service and retail personnel, food service crews, and transport or delivery workers) have a higher reproduction number. Our simulations show that both the frontliners and the general public should be protected against the disease. Protecting only the frontliners will not result in flattening the epidemic curve. Protecting only the general public may flatten the epidemic curve but the infection risk faced by the frontliners is still high, which may eventually affect their work. The insights from our model remind us of the importance of community effort in controlling the transmission of the disease.
Long-range olfactory search is an extremely difficult task in view of the sparsity of odor signals that are available to the searcher and the complex encoding of the information about the source location. Current algorithmic approaches typically require a continuous memory space, sometimes of large dimensionality, which may hamper their optimization and often obscure their interpretation. Here, we show how finite-state controllers with a small set of discrete memory states are expressive enough to display rich, time-extended behavioral modules that resemble the ones observed in living organisms. Finite-state controllers optimized for olfactory search have an immediate interpretation in terms of approximate clocks and coarse-grained spatial maps, suggesting connections with neural models of search behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.