A novel multi-sensor power spectrum blind sampling (PSBS) approach is proposed supporting low-power wireless sensor networks (WSN) for Operational Modal Analysis (OMA) applications. The developed approach relies on arrays of wireless sensors, employing deterministic non-uniform in time multi-coset sampling to acquire structural response acceleration signals at sub-Nyquist sampling rates, treated as realizations of stationary random processes without making any assumption about the average signal frequency content and spectral support. The acquired compressed measurements are transmitted to a central server and collectively processed via a PSBS technique, herein extended to the multi-sensor case, to estimate the power spectral density matrix of an underlying spatially correlated stationary response acceleration random process directly from the compressed measurements. Structural modal properties are then extracted through standard frequency domain decomposition (FDD). The efficacy of the proposed approach to resolve closelyspaced modes is numerically tested for various data compression levels using noisy response acceleration signals of a white-noise excited finite element model of a space truss as well as fieldrecorded acceleration time-histories of an instrumented bridge under operational loading. It is shown that accurate mode shapes based on the modal assurance criterion can be obtained from as low as 89% less measurements compared to conventional non-compressive FDD at Nyquist sampling rate. Further, significant gains in energy consumption and battery lifetime prolongation of the order of years are estimated, assuming wireless sensors operating on multi-coset sampling at different data compression levels. It is, therefore, concluded that the proposed PSBS approach could provide long-term structural health monitoring systems with low-maintenance cost once wireless sensors with multi-coset sampling capabilities become commercially available.
Motivated by a need to reduce energy consumption in wireless sensors for vibration-based structural health monitoring (SHM) associated with data acquisition and transmission, this paper puts forth a novel approach for undertaking operational modal analysis (OMA) and damage localization relying on compressed vibrations measurements sampled at rates well below the Nyquist rate. Specifically, non-uniform deterministic sub-Nyquist multi-coset sampling of response acceleration signals in white noise excited linear structures is considered in conjunction with a power spectrum blind sampling/estimation technique which retrieves/samples the power spectral density matrix from arrays of sensors directly from the sub-Nyquist measurements (i.e., in the compressed domain) without signal reconstruction in the time-domain and without posing any signal sparsity conditions. The frequency domain decomposition algorithm is then applied to the power spectral density matrix to extract natural frequencies and mode shapes as a standard OMA step. Further, the modal strain energy index (MSEI) is considered for damage localization based on the mode shapes extracted directly from the compressed measurements. The effectiveness and accuracy of the proposed approach is numerically assessed by considering simulated vibration data pertaining to a white-noise excited simply supported beam in healthy and in 3 damaged states, contaminated with Gaussian white noise. Good accuracy is achieved in estimating mode shapes (quantified in terms of the modal assurance criterion) and natural frequencies from an array of 15 multi-coset devices sampling at a 70% slower than the Nyquist frequency rate for SNRs as low as 10db. Damage localization of equal level/quality is also achieved by the MSEI applied to mode shapes derived from noisy sub-Nyquist (70% compression) and Nyquist measurements for all damaged states considered. Overall, the furnished numerical results demonstrate that the herein considered sub-Nyquist sampling and multi-sensor power spectral density estimation techniques coupled with standard OMA and damage detection approaches can achieve effective SHM from significantly fewer noisy acceleration measurements.
This article assesses numerically the potential of two different spectral estimation approaches supporting non-uniformin-time data sampling at sub-Nyquist average rates (i.e. below the Nyquist frequency) to reduce data transmission payloads in wireless sensor networks for operational modal analysis of civil engineering structures. This consideration relaxes transmission bandwidth constraints in wireless sensor networks and prolongs sensor battery life since wireless transmission is the most energy-hungry on-sensor operation. Both the approaches assume acquisition of sub-Nyquist structural response acceleration measurements and transmission to a base station without on-sensor processing. The response acceleration power spectral density matrix is estimated directly from the sub-Nyquist measurements, and structural mode shapes are extracted using the frequency-domain decomposition algorithm. The first approach relies on the compressive sensing theory to treat sub-Nyquist randomly sampled data assuming that the acceleration signals are sparse/compressible in the frequency domain (i.e. have a small number of Fourier coefficients with significant magnitude). The second approach is based on a power spectrum blind sampling technique considering periodic deterministic sub-Nyquist ''multi-coset'' sampling and treating the acceleration signals as wide-sense stationary stochastic processes without posing any sparsity conditions. The modal assurance criterion is adopted to quantify the quality of mode shapes derived by the two approaches at different sub-Nyquist compression rates using computer-generated signals of different sparsity and field-recorded stationary data pertaining to an overpass in Zurich, Switzerland. It is shown that for a given compression rate, the performance of the compressive sensing-based approach is detrimentally affected by signal sparsity, while the power spectrum blind sampling-based approach achieves modal assurance criterion .0.96 independently of signal sparsity for compression ratios as low as 22% the Nyquist rate. It is concluded that the power spectrum blind sampling-based approach reduces effectively data transmission requirements in wireless sensor networks for operational modal analysis, without being limited by signal sparsity and without requiring a priori assumptions or knowledge of signal sparsity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.