The Unified Modeling Language (UML) is the de facto language used in the industry for software specifications. Once an application has been formally specified, Model Driven Architecture (MDA) techniques can be applied to generate code from such specifications. Since implementing a system based on a faulty design requires additional cost and effort, it is important to analyse the UML models at earlier stages of the software development lifecycle. This paper focuses on utilizing MDA techniques to deal with the analysis of UML models and identify design faults within a specification. Specifically, we show how UML models can be automatically transformed into Alloy which, in turn, can be automatically analysed by the Alloy Analyzer. The proposed approach relies on MDA techniques to transform UML models to Alloy. This paper reports on the challenges of the model transformation from UML class diagrams and OCL to Alloy. Those issues are caused by fundamental differences in design philosophy of UML and Alloy. To facilitate better representation of Alloy concepts in the UML, the paper draws on the lessons learnt and presents a UML profile for Alloy.
Abstract. Alloy is a formal language, which has been applied to modelling of systems in a wide range of application domains. It is supported by Alloy Analyzer, a tool, which allows fully automated analysis. As a result, creating Alloy code from a UML model provides the opportunity to exploit analysis capabilities of the Alloy Analyzer to discover possible design flaws at early stages of the software development. Our research makes use of model based techniques for the automated transformation of UML class diagrams with OCL constraints to Alloy code. The paper demonstrates challenging aspects of the model transformation, which originate in fundamental differences between UML and Alloy. We shall discuss some of the differences and illustrate their implications on the model transformation process. The presented approach is explained via an example of a secure e-business system.
Abstract. Model Transformations can be used to bridge the gap between design and analysis technical spaces by creating tools that allow a model produced by a designer to be transformed to a model suitable for conducting automated analysis. Such model transformations aim at allowing the designer to benefit from the capabilities provided by analysis tools and languages. If the designer who is not a formal method expert is to benefit from such tools, the outcome of the analysis should also be transformed to the language used in the design domain. This paper presents a study involving UML2Alloy, a tool for transforming UML models in form of UML class diagrams which are augmented with OCL constraints, to Alloy. The conversion allows analysis of UML models via Alloy, to identify consistencies in those UML models. We present a method of automatically creating a model transformation based on the original UML2Alloy transformation. The new transformation converts Alloy instances into the UML equivalent object diagram. The current technique is presented with the help of an example, along with a prototype implementation using the QVT standard.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.