Cyprus plans to drastically increase the share of renewable energy sources from 13.9% in 2020 to 22.9% in 2030. Solar energy can play a key role in the effort to fulfil this goal. The potential for production of solar energy over the island is much higher than most of European territory because of the low latitude of the island and the nearly cloudless summers. In this study, high quality and fine resolution satellite retrievals of aerosols and dust, from the newly developed MIDAS climatology, and information for clouds from CM SAF are used in order to quantify the effects of aerosols, dust, and clouds on the levels of surface solar radiation for 2004–2017 and the corresponding financial loss for different types of installations for the production of solar energy. Surface solar radiation climatology has also been developed based on the above information. Ground-based measurements were also incorporated to study the contribution of different species to the aerosol mixture and the effects of day-to-day variability of aerosols on SSR. Aerosols attenuate 5–10% of the annual global horizontal irradiation and 15–35% of the annual direct normal irradiation, while clouds attenuate 25–30% and 35–50% respectively. Dust is responsible for 30–50% of the overall attenuation by aerosols and is the main regulator of the variability of total aerosol. All-sky annual global horizontal irradiation increased significantly in the period of study by 2%, which was mainly attributed to changes in cloudiness.
In this study we focus on measurements and modeled UV index in the region of Athens, Greece, during a low ozone event. During the period of 12–19 May 2020, total ozone column (TOC) showed extremely low values, 35–55 Dobson Units (up to 15%) decrease from the climatic mean (being lower than the −2σ). This condition favors the increase of UV erythemal irradiance, since stratospheric ozone is the most important attenuator at the UVB spectral region. Simultaneously, an intrusion of Saharan dust aerosols in the region has masked a large part of the low ozone effect on UV irradiance. In order to investigate the event, we have used spectral solar irradiance measurements from the Precision Solar Radiometer (PSR), TOC from the Brewer spectrophotometer, and Radiative Transfer Model (RTM) calculations. Model calculations of the UV Index (UVI) showed an increase of ~30% compared to the long-term normal UVI due to the low TOC while at the same time and for particular days, aerosols masked this effect by ~20%. The RTM has been used to investigate the response in the UV spectral region of these variations at different solar zenith angles (SZAs). Spectra simulated with the RTM have been compared to measured ones and an average difference of ~2% was found. The study points out the importance of accurate measurements or forecasts of both ozone and aerosols when deriving UVI under unusual low ozone–high aerosol conditions.
ABSTRACT:A frequent area of waterspout formation is identified over the southern Aegean Sea. The objectives of this study are threefold: (1) to investigate the temporal evolution of Cloud Top Temperature (CTT) of cloud lines (waterspouts' parent clouds) that triggered the formation of single or multiple waterspout events, by using Meteorological Satellite Second Generation infrared satellite data, cloud base height data and weather observations from the closest Hellenic National Meteorological Service meteorological station; (2) to synthesize a detailed climatology of the thermodynamic environment during waterspout activity and (3) to explore the sea-surface temperature (SST) seasonal distribution and its possible relationships with the temperature of the middle and lower troposphere during waterspout days over the southern Aegean Sea.It was found that the CTT of waterspout parent clouds decreases close to waterspout formation time, which is consistent with growing clouds. The Severe Weather Threat Index (SWEAT), the Bulk Richardson Number (BRN) and the Convective Potential Available Energy during the autumn season were consistent with a shallow-convection environment. The instability parameter ΔT 1000 (difference in the air temperature between 1000 hPa and that at other pressure levels) exhibited a symmetric distribution about the median during both seasons and at all levels. More than 75% of autumn waterspout activity over the southern Aegean Sea developed with SST values varying from 22 to 24.5 ∘ C, while the instability parameter ΔT SST (the temperature difference between the SST and the temperature at various pressure levels) exhibited a symmetrical distribution about the median for both seasons and for all pressure levels, consistent with the ΔT 1000 seasonal distribution. A statistical analysis showed that the means of SWEAT, BRN, convective inhibition, SST, ΔT SST and ΔT 1000 from air temperature at 700 hPa differ statistically significant (p < 0.001) between waterspout and non-waterspout days in autumn, over the southern Aegean Sea, during 2005-2012.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.