Objective:The composition of the oral microbiome differs distinctively between subjects with and without active caries. Still, caries research has mainly been focused on states of disease; aspects about how biofilm composition and structure maintain oral health still remain widely unclear. Therefore, the aim of the study was to compare the healthy oral microbiome of caries-free adult subjects with and without former caries experience using next generation sequencing methods. Methods: 46 samples were collected from subjects without any signs of untreated active caries. Samples of pooled supragingival plaque from 19 subjects without caries experience (NH; DMFT = 0) and 27 subjects with 'caries experience' (CE; DMFT > 0 [F(T)> 0; D(T)= 0]) were analyzed by 16S ribosomal RNA amplicon sequencing. Results: Subjects with caries experience did not exhibit a dramatically modified supragingival plaque microbiome. However, we observed a slight and significant modification between the two groups, validated by PERMANOVA (NH vs. CE: R2 0.04; p= 0.039). The composition of the microbiome of subjects with caries experience indicates a tendency to lower α-diversity and richness. Subjects without caries experience showed a significant higher evenness compared to patients with previous caries. LDA effect size (LEfSe) analysis demonstrated that the genus Haemophilus is significantly more frequent in patients with caries experience. For the group without caries experience LefSe analysis showed a set of 11 genera being significantly more frequent, including Corynebacterium, Fusobacterium, Capnocytophaga, Porphyromonas, Prevotella,and Leptotrichia. Conclusion: The analysis of the oral microbiome of subjects with and without caries experience indicates specific differences. With the presence of Corynebacterium and Fusobacterium subjects without caries experience exhibited more frequently organisms that are considered to be main actors in structural plaque formation and integration. The abundance of Corynebacterium might be interpreted as a signature for dental health.
Objectives To elicit patterns in pathogenic biofilm composition we characterized the oral microbiome present in patients with dentin caries in comparison to healthy subjects. Methods 16S amplicon sequencing was used to analyse a total of 56 patients; 19 samples of carious dentin (pooled from at least three teeth) and 37 supragingival samples (pooled from three healthy tooth surfaces). Oral and periodontal status and socio-demographic parameters were recorded. Group assignment, smoking and further socio-demographic parameters were used as explanatory variables in the microbiome composition analysis. Results Overall, a total of 4,110,020 DNA high-quality sequences were yielded. Using a threshold of similarity >97% for assigning operational taxonomic units (OTU), a total of 1,537 OTUs were identified. PERMANOVA showed significant differences in microbiome composition between the groups caries/healthy (p = 0.001), smoking/non-smoking (p = 0.007) and fluoride intake during childhood yes/no (tablets p = 0.003, salt p = 0.023). The healthy microbiome had a significantly higher diversity (alpha diversity, p<0.001) and a lower dominance (Berger-Parker index, p<0.001). It was dominated by Fusobacteria . A linear discriminant analysis effect size (LEfSe) yielded a set of 39 OTUs being more abundant in carious dentin samples, including Atopobium spp. (14 . 9 log2FoldChange) , Lactobacillus casei (11 . 6) , Acinetobacter spp. (10 . 8) , Lactobacillus gasseri (10 . 6) , Parascardovia denticolens (10 . 5) , Olsenella profusa (10 . 4) , and others. Also Propionibacterium acidifaciens (7 . 2) and Streptococcus mutans (5 . 2) were overabundant in caries lesions. Conclusions The healthy microbiome was highly diverse. The advanced caries microbiome was dominated by a set of carious associated bacteria where S . mutans played only a minor role. Smoking and fluoride intake during childhood influenced the microbiome composition significantly. Clinical significance The presented investigation adds knowledge to the still not fully comprehended patterns of oral microbiomes in caries compared with oral health. By analysing the genetics of biofilm samples from oral health and severe tooth decay we found distinct discriminating species which could be targets for future therapeutic approaches.
Background Antimicrobial resistance (AMR) is an ever-growing threat to modern medicine and, according to the latest reports, it causes nearly twice as many deaths globally as AIDS or malaria. Elucidating reservoirs and dissemination routes of antimicrobial resistance genes (ARGs) are essential in fighting AMR. Human commensals represent an important reservoir, which is underexplored for the oral microbiota. Here, we set out to investigate the resistome and phenotypic resistance of oral biofilm microbiota from 179 orally healthy (H), caries active (C), and periodontally diseased (P) individuals (TRN: DRKS00013119, Registration date: 22.10.2022). The samples were analysed using shotgun metagenomic sequencing combined, for the first time, with culture technique. A selection of 997 isolates was tested for resistance to relevant antibiotics. Results The shotgun metagenomics sequencing resulted in 2,069,295,923 reads classified into 4856 species-level OTUs. PERMANOVA analysis of beta-diversity revealed significant differences between the groups regarding their microbiota composition and their ARG profile. The samples were clustered into three ecotypes based on their microbial composition. The bacterial composition of H and C samples greatly overlapped and was based on ecotypes 1 and 2 whereas ecotype 3 was only detected in periodontitis. We found 64 ARGs conveying resistance to 36 antibiotics, particularly to tetracycline, macrolide-lincosamide-streptogramin, and beta-lactam antibiotics, and a correspondingly high prevalence of phenotypic resistance. Based on the microbiota composition, these ARGs cluster in different resistotypes, and a higher prevalence is found in healthy and caries active than in periodontally diseased individuals. There was a significant association between the resistotypes and the ecotypes. Although numerous associations were found between specific antibiotic resistance and bacterial taxa, only a few taxa showed matching associations with both genotypic and phenotypic analyses. Conclusions Our findings show the importance of the oral microbiota from different niches within the oral cavity as a reservoir for antibiotic resistance. Additionally, the present study showed the need for using more than one method to reveal antibiotic resistance within the total oral biofilm, as a clear mismatch between the shotgun metagenomics method and the phenotypic resistance characterization was shown.
There are many studies on the homebound and institutionalized elderly; however, few studies focus on centenarians and supercentenarians, i.e., people aged 100 and 110 years, respectively. Due to the demographic changes, the population of centenarians is set to increase more than that of other age groups. Therefore, this article aims to review the available literature regarding how oral health might display in this age group and highlight aspects necessitating further research. Oral health, oral healthrelated quality of life, saliva, and the oral microbiome were emphasized in this study. Most papers relevant to the research questions were excluded because the mean age of participants was <100 years. Only two papers were found on centenarians' oral health status and saliva and no studies were found focusing on the oral health-related quality of life or oral microbiome. The reviewed studies demonstrate that centenarians presented with good oral mucosal conditions, dental conditions, and general health. The present literature is insufficient to come to a definite conclusion regarding how aging affects the oral health of centenarians and supercentenarians. The limited available research indicates that centenarians display better oral health than other individuals in their respective birth cohorts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.