Curation, standardization and data fusion of the antiviral information present in the ChEMBL public database led to the definition of a robust data set, providing an association of antiviral compounds to seven broadly defined antiviral activity classes. Generative topographic mapping (GTM) subjected to evolutionary tuning was then used to produce maps of the antiviral chemical space, providing an optimal separation of compound families associated with the different antiviral classes. The ability to pinpoint the specific spots occupied (responsibility patterns) on a map by various classes of antiviral compounds opened the way for a GTM-supported search for privileged structural motifs, typical for each antiviral class. The privileged locations of antiviral classes were analyzed in order to highlight underlying privileged common structural motifs. Unlike in classical medicinal chemistry, where privileged structures are, almost always, predefined scaffolds, privileged structural motif detection based on GTM responsibility patterns has the decisive advantage of being able to automatically capture the nature ("resolution detail"-scaffold, detailed substructure, pharmacophore pattern, etc.) of the relevant structural motifs. Responsibility patterns were found to represent underlying structural motifs of various natures-from very fuzzy (groups of various "interchangeable" similar scaffolds), to the classical scenario in medicinal chemistry (underlying motif actually being the scaffold), to very precisely defined motifs (specifically substituted scaffolds).
A model developed to predict aqueous solubility at different temperatures has been proposed based on quantitative structure-property relationships (QSPR) methodology. The prediction consists of two steps. The first one predicts the value of k parameter in the linear equation lgSw=kT+c, where Sw is the value of solubility and T is the value of temperature. The second step uses Random Forest technique to create high-efficiency QSPR model. The performance of the model is assessed using cross-validation and external test set prediction. Predictive capacity of developed model is compared with COSMO-RS approximation, which has quantum chemical and thermodynamic foundations. The comparison shows slightly better prediction ability for the QSPR model presented in this publication. © 2016 Wiley Periodicals, Inc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.