Transparent conductive films (TCFs) were fabricated through bar-coating with a water-in-toluene emulsion containing Ag nanoparticles (AgNPs). Morphological changes in the self-assembled TCF networks under different emulsion formulations and coating conditions and the corresponding optoelectrical properties were investigated. In preparing various emulsions, the concentration of AgNPs and the water weight fraction were important factors for determining the size of the water droplets, which plays a decisive role in controlling the optoelectrical properties of the TCFs affected by open cells and conductive lines. An increased concentration of AgNPs and decreased water weight fraction resulted in a decreased droplet size, thus altering the optoelectrical properties. The coating conditions, such as coating thickness and drying temperature, changed the degree of water droplet coalescence due to different emulsion drying rates, which also affected the final self-assembled network structure and optoelectrical properties of the TCFs. Systematically controlling various material and process conditions, we explored a coating strategy to enhance the optoelectrical properties of TCFs, resulting in an achieved transmittance of 86 ± 0.2%, a haze of 4 ± 0.2%, and a sheet resistance of 35 ± 2.8 Ω/□. TCFs with such optimal properties can be applied to touch screen fields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.