Measurements of cell body and peripheral and central axon sizes were made for primary sensory neurons outlined by the intracellular injection of HRP. Conduction velocities were also measured on the outlined processes.The sensory neurons were then subdivided into A and C cells on the basis of the conduction velocity of the impulses carried by the processes of these cells.Central processes of both A and C cells are smaller than the peripheral processes, but the size differential is greater for the C cells. For A cells there is a linear relation between the size of the peripheral axon and the conduction velocity of the impulses carried by these axons, but the confidence limits are wide. For C cells there is a linear relation between the size of the central process and conduction velocity of the impulses carried by the processes, but for the peripheral processes two aberrant processes resulted in no correlation between process size and conduction velocity. For A cells, the size of the central and peripheral processes and the conduction velocity of the impulses carried by the peripheral processes are linearly correlated with cell body size. By contrast no such correlations can be demonstrated for C cells. This presumably implies an important difference in that the size of the cell body is correlated with axon size and impulse conduction velocity for A cells but not for C cells.A widely accepted generalization is that large sensory cells give rise to myelinated axons and small sensory cells to unmyelinated axons. In this study, myelinated and unmyelinated are defined on the basis of impulse conduction velocity. For those cells that are clearly large (greater than 50 pm in diameter), the conduction velocity of the impulses carried by their processes is always greater than 2.5 m/s, and for those cells that are clearly small (less than 35 pm in diameter), the conduction velocity is always less than 2.5 d s . Thus for these cells the above generalization holds. For the intermediate-sized cells (35-50 pm), however, the size of the cell body bears no predictable relation to the conduction velocity of the impulses carried by those processes, and thus to whether the axons are myelinated or unmyelinated. Thus the above generalization does not hold for this intermediate group of cells, and since there are many cells in this size range, we feel that the generalization that large cells give rise to myelinated axons and small cells to unmyelinated axons is an oversimplification.
Transcutaneous electrical nerve stimulation (TENS) was applied in an experimental animal model to investigate the underlying mechanisms of this treatment. Recordings were made from identified spinothalamic tract (STT) neurons in the lumbosacral spinal cords of seven anesthetized monkeys. The STT cells were activated by stimulating the common peroneal nerve at a suprathreshold intensity for C-fibers. Evoked responses of C-fibers were compared before, during, and after application of TENS for 5 minutes from a commercially available TENS unit. The current delivered by the TENS unit was monitored. In 14 STT cells, some degree of inhibition of C-fiber evoked responses occurred only when the intensity of TENS exceeded the threshold of A delta fibers. At a given stimulus intensity, bursts of pulses repeated at a low rate were more effective than high-rate pulses. When TENS was applied to an area of the skin within a cell's receptive field, it was more effective than when it was applied outside the receptive field. The C-fiber volley recorded from a peripheral nerve was not reduced in size, and there were no substantial changes in its latency due to TENS. The inhibition of the activity of STT cells was not altered appreciably after intravenous injection of naloxone hydrochloride. These results suggest that TENS produces central nervous system inhibition by activating A delta afferent fibers. The inhibitory effects of TENS on STT cells appear to be due to a mechanism that does not involve release of endogenous opioid substances.
Small peptides and proteins play critical regulatory roles in plant development and environmental stress responses; however, only a few of these molecules have been identified and characterized to date because of their poor annotation and other experimental challenges. Here, we present that rice (Oryza sativa L.) OsS1Fa1, a small 76-amino acid protein, confers drought stress tolerance in Arabidopsis thaliana. OsS1Fa1 was highly expressed in leaf, culm, and root tissues of rice seedlings during vegetative growth and was significantly induced under drought stress. OsS1Fa1 overexpression in Arabidopsis induced the expression of selected drought-responsive genes and enhanced the survival rate of transgenic lines under drought. The proteasome inhibitor MG132 protected the OsS1Fa1 protein from degradation. Together, our data indicate that the small protein OsS1Fa1 is induced by drought and is post-translationally regulated, and the ectopic expression of OsS1Fa1 protects plants from drought stress.
Although sorption is a common method of removing volatile organic compounds (VOC's) from processes, the adsorbent must be regenerated to repeat the process. The use of microwaves to regenerate the bed of adsorbent can be more efficient than conventional heating methods. Desorption of methanol from a silicalite zeolite was studied by the use of microwaves in cylindrical column. Temperature probes at five axial and three radial positions monitored the temperature profile in time. A significant amount of microwave energy passed through the dry zeolite bed, whereas a strong attenuation occurs if methanol is adsorbed. The radial temperature distribution conforms to theoretical predictions; however, microwave reflections cause a distortion of the predictions in the axial direction. Irregularities during the saturation of the bed indicated a chemical reaction during the irradiation with microwaves. A fraction of the methanol reacted under microwave irradiation to form dimethylether and water, and to methoxylate the zeolite surface. V V C 2009 American Institute of Chemical Engineers AIChE J, 55: 1906AIChE J, 55: -1913AIChE J, 55: , 2009 Keywords: adsorption, isotherm, dielectric, heating, permittivity, methanol, silicalite IntroductionSorption is central to many industrial processes. Many manufacturing industries employ organic chemicals as solvents, cleaners, or reactants. To clear these pollutants from waste gas, adsorption of these VOC's (volatile organic compounds) on zeolites (molecular sieves) or on active carbons is widely used. The adsorbed species can be recycled and reused by heating the adsorbate to induce desorption. In a conventional desorption process, the energy used for desorption is introduced into the system via the gas phase or through the walls, and is distributed by heat transfer (convection and conduction). This is an indirect way of heating, since the entire system (the gas phase as well as the adsorbent bulk phase) has to be heated to the desorption regeneration temperature.Microwaves have the unique ability to heat materials selectively, depending on their dielectric properties. This makes microwaves interesting for use in sorption processes. With microwaves, energy can be delivered more efficiently to the actual sorption site, i.e., to an adsorbate on the surface of the adsorbent, provided that the adsorbate and/or the adsorbent surface can absorb microwave energy more efficiently than the adsorbent bulk phase. varying field intensity and penetration depth, become important. Mehdizadeh 3 discusses problems that have to be considered in scaling up processes involving microwave-induced reactions. This indicates a need to study the behavior of microwave propagation combined with desorption in larger scale systems.This study employs a pilot-scale cylindrical column (7.62 cm by 1 m) for desorption processes. It is intended to provide a basis to characterize the microwave propagation and sorption processes in a larger-scale system. A zeolite adsorbent was employed such that the adsorbent only we...
Responses of dorsal horn cells to ventral root stimulation were determined for the L7 and S1 levels of the spinal cord of 14 anesthetized cats. Forty-six dorsal horn cells were found that were excited by stimulation of the distal stump of the cut ventral root. For maximum excitation it was necessary to use a train of stimuli. For the 34 dorsal horn cells whose peripheral receptive-field properties could be characterized, 14 were wide dynamic range cells and 19 were high-threshold cells. The other cell responded exclusively to stimulation of deep tissue. None of the cells responded exclusively to innocuous stimuli, and all responded more vigorously to noxious than to innocuous stimuli. Some cells also responded to noxious heat applied to the skin of the receptive field. Locations of 10 of the activated dorsal horn cells were identified. They were distributed throughout the dorsal horn, but most were found in laminae V and VI. In four animals, both the proximal and distal stumps of the cut S1 ventral root were stimulated while searching for dorsal horn cells. Ten dorsal horn cells were found that were excited by stimulation of the distal stump of the ventral root. No cells were found that responded to proximal stump stimulation. To prevent current spread by stimulation of the ventral root, an extra ground electrode was placed distal to the stimulating electrodes. When the ground electrode was removed, distinctive signs of current spread appeared in that a cord dorsum potential could be recorded and the dorsal horn neuronal responses changed. Dorsal horn neurons could also be excited by nonelectrical stimuli such as crushing the ventral root. If the ventral root was crushed distal to the stimulating electrodes, however, the initially excited cell could no longer be activated by ventral root stimulation. Activation of dorsal horn cells by stimulation of the distal stump of a cut ventral root was abolished when the dorsal root of the same segment was sectioned. Conduction velocities of the fibers in the ventral root that excited dorsal horn cells ranged between 0.25 and 1.78 m/s with a mean of 0.91 +/- 0.47 (SD) m/s. These results show that there are unmyelinated afferent fibers in the ventral root that enter the spinal cord through the dorsal root and excite dorsal horn cells.(ABSTRACT TRUNCATED AT 400 WORDS)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.