Abstract-In a Robot Learning from Demonstration framework involving environments with many objects, one of the key problems is to decide which objects are relevant to a given task. In this paper, we analyze this problem and propose a biologically-inspired computational model that enables the robot to focus on the task-relevant objects. To filter out incompatible task models, we compute a Task Relevance Value (TRV) for each object, which shows a human demonstrator's implicit indication of the relevance to the task. By combining an intentional action representation with 'motionese' [2], our model exhibits recognition capabilities compatible with the way that humans demonstrate. We evaluate the system on demonstrations from five different human subjects, showing its ability to correctly focus on the appropriate objects in these demonstrations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.