Unusual performances of metamaterials such as negative index of refraction, memory effect, and cloaking originate from the resonance features of the metallic composite atom [1][2][3][4][5][6] . Indeed, control of metamaterial properties by changing dielectric environments of thin films below the metallic resonators has been demonstrated [7][8][9][10][11] . However, the dynamic control ranges are still limited to less than a factor of 10, 7-11 with the applicable bandwidth defined by the sharp resonance features. Here, we present ultra-broad-band metamaterial thin film with colossal dynamic control range, fulfilling present day research demands. Hybridized with thin VO 2 (vanadium dioxide) 12-18 films, nanoresonator supercell arrays designed for one decade of spectral width in terahertz frequency region show an unprecedented extinction ratio of over 10000 when the underlying thin film experiences a phase transition. Our nanoresonator approach realizes the full potential of the thin film technology for long wavelength applications.
Spectral clustering is a celebrated algorithm that partitions objects based on pairwise similarity information. While this approach has been successfully applied to a variety of domains, it comes with limitations. The reason is that there are many other applications in which only multi-way similarity measures are available. This motivates us to explore the multi-way measurement setting. In this work, we develop two algorithms intended for such setting: Hypergraph Spectral Clustering (HSC) and Hypergraph Spectral Clustering with Local Refinement (HSCLR). Our main contribution lies in performance analysis of the poly-time algorithms under a random hypergraph model, which we name the weighted stochastic block model, in which objects and multi-way measures are modeled as nodes and weights of hyperedges, respectively. Denoting by n the number of nodes, our analysis reveals the following: (1) HSC outputs a partition which is better than a random guess if the sum of edge weights (to be explained later) is Ω(n); (2) HSC outputs a partition which coincides with the hidden partition except for a vanishing fraction of nodes if the sum of edge weights is ω(n); and (3) HSCLR exactly recovers the hidden partition if the sum of edge weights is on the order of n log n. Our results improve upon the state of the arts recently established under the model and they firstly settle the order-wise optimal results for the binary edge weight case. Moreover, we show that our results lead to efficient sketching algorithms for subspace clustering, a computer vision application. Lastly, we show that HSCLR achieves the information-theoretic limits for a special yet practically relevant model, thereby showing no computational barrier for the case.
Novel 3D metallic structures composed of multipetal flowers consisting of nanoparticles are presented. The control of surface plasmon hotspots is demonstrated in terms of location and intensity as a function of petal number for uniform and reproducible surfaceenhanced Raman spectroscopy (SERS) with high field enhancement.
We report the effect of a nanobump assembly (NBA) constructed with molybdenum oxide (MoO3) covering Ag nanoparticles (NPs) under the active layer on the efficiency of plasmonic polymer solar cells. Here, the NPs with precisely controlled concentration and size have been generated by an atmospheric evaporation/condensation method and a differential mobility classification and then deposited on an indium tin oxide electrode via room temperature aerosol method. NBA structure is made by enclosing NPs with MoO3 layer via vacuum thermal evaporation to isolate the undulated active layer formed onto the underlying protruded NBA. Simulated scattering cross sections of the NBA structure reveal higher intensities with a strong forward scattering effect than those from the flat buffer cases. Experimental results of the device containing the NBA show 24% enhancement in short-circuit current density and 18% in power conversion efficiency compared to the device with the flat MoO3 without the NPs. The observed improvements are attributed to the enhanced light scattering and multireflection effects arising from the NBA structure combined with the undulated active layer in the visible and near-infrared regions. Moreover, we demonstrate that the NBA adopted devices show better performance with longer exciton lifetime and higher light absorption in comparison with the devices with Ag NPs incorporated flat poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). Thus, the suggested approach provides a reliable and efficient light harvesting in a broad range of wavelength, which consequently enhances the performance of various organic solar cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.