The aim of this study is to determine the effects of using emulsion manufactured with soybeans (ES) to substitute chicken breast in Vienna sausages. Four types of Vienna sausages (S1: 10% ES and 50% chicken, S2: 20% ES and 40% chicken, S3: 30% ES and 30% chicken, and S4: 40% ES and 20% chicken) for this study were made. The pH, color, proximate composition, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), microphotographs, cooking yields, and texture profile analysis of sausages were examined. The pH value of uncooked and cooked sausages increased significantly with increasing ES content (p<0.05). The crude protein contents of S2, S3, and S4 were significantly higher than that of the control (p<0.05). Furthermore, the SDS-PAGE results showed that α-conglycinin, β-conglycinin, and the acidic subunit of glycinin all increased with increasing ES content. Microphotographs revealed that increasing the ES content decreased the size of fat globules. The cooking yields of samples increased significantly with increasing ES content (p<0.05). The hardness values of ES treated samples were significantly lower than that of the control (p<0.05). Therefore, 30% substitute of chicken breast with ES can improve the quality and structure of Vienna sausage, without inducing critical defects.
The aim of the study was to determine the effect of whole milk powder (WMP) as heterologous proteins on chicken breast emulsion-type sausages. The quality properties of WMP on such chicken breast emulsion-type sausages were investigated by measuring the proximate composition, pH, color, cooking yield, protein solubility, and by applying other methods, such as texture profile analysis (TPA), microphotograph, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and electronic nose. The crude fat, protein, and ash contents of 15% WMP samples were significantly higher than the control samples ( p < 0.05). The redness of the cooked samples significantly increased with an increase in the WMP contents ( p < 0.05). The cooking yield of WMP treated samples was significantly higher than the control sample ( p < 0.05). Additionally, the hardness, gumminess, and chewiness of WMP treated samples were significantly higher than the control sample ( p < 0.05). The sarcoplasmic and myofibrillar proteins of samples containing 15% WMP were significantly higher than the control samples ( p < 0.05). The result of SDS-PAGE showed that the C protein, sarcoplasmic protein, actin, and tropomyosin increased with an increase in the WMP contents. The principal component analysis plot of WMP-treated samples was clearly different from that of the control samples. Based on these results, it was predicted that WMP could be useful as heterologous protein on emulsion-type sausage.
The aim of this study is to establish the dry aging period of beef loin in an electric field refrigeration system. Beef loins (Korea quality grade 2) were dry aged at 0, −1, and −2 °C temperature in an electric field refrigeration system (air velocity, 5 ± 2 m/s) and aging stopped as the value of TPC reached 7 log CFU/g. Samples were examined by aging yield, trimming yield, pH, color, water holding capacity (WHC), cooking yield, shear force, total plate count (TPC), 2-thiobarbituric acid reactive substances (TBARS), and volatile basic nitrogen (VBN). The results for aging yield, trimming yield, redness, yellowness, and chroma decreased with increasing the dry aging period. Contrariwise, those for pH, lightness, hue angle, WHC, and cooking yield increased with the dry aging period. In shear force, the lowest value occurred at four weeks at all temperatures. The results for TPC, TBARS, and VBN increased with aging period, and VBN at 6 weeks at 0 °C and 9 weeks at −1 °C exceed the standard value (20 mg/100 g), while dry aging temperature had an effect on physico-chemical and storage properties by lower temperatures showed slower progress. Therefore, dry aging on an electric field refrigerate system can be used until 4 weeks at 0 °C, 8 weeks at −1 °C, and 10 weeks at −2 °C. However, considering physico-chemical properties, 4 weeks at every temperature is suitable for manufacturing soft dry-aged beef loin.
This study was conducted to analyze the physicochemical properties of black goat meat according to the slaughter age (3, 6, 9, 12, 24, 36 months). The moisture content tended to decrease, whereas the fat content, pH, and free amino acid composition tended to increase with increasing slaughter age. The collagen content increased significantly with the increasing slaughter age (p < 0.05). The cooking yield showed a tendency to increase up to 12 months of age, and there was no significant difference after 12 months of age. In all mineral contents, the sample for 12 months of age showed higher values than the others. Considering fatty acid composition, the saturated fatty acid content of the 12-month sample had a lower value than the other samples. However, the unsaturated fatty acid of the 12-month sample had higher values than the other samples. Therefore, the best slaughter age for black goats occurs at 12 months of age when nutrition is excellent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.