Background: To investigate the trends of succession occurring at the Pinus thunbergii forests on the lowlands of Jeju Island, we quantified the species compositions and the importance values by vegetation layers of Braun-Blanquet method on the Pinus thunbergii forests. We used multivariate analysis technique to know the correlations between the vegetation group types and the location environmental factors; we used the location environment factors such as altitudes above sea level, tidal winds (distance from the coast), annual average temperatures, and forest gaps to know the vegetation distribution patterns. Results: According to the results on the lowland of Jeju Island, the understory vegetation of the lowland Pinus thunbergii forests was dominated by tall evergreen broad-leaved trees such as Machilus thunbergii, Neolitsea sericea, and Cinnamomum japonicum showing a vegetation group structure of the mid-succession, and the distribution patterns of vegetation were determined by the altitudes above sea level, the tidal winds on the distance from the coast, the annual average temperatures, and the forest gaps. We could discriminate the secondary succession characteristics of the Pinus thunbergii forests on the lowland and highland of Jeju Island of South Korea. Conclusions:In the lowland of Jeju Island, the secondary succession will progress to the form of Pinus thunbergii (early successional species)→Machilus thunbergii, Litsea japonica (mid-successional species)→Machilus thunbergii (late-successional species) sequence in the temperate areas with strong tidal winds. In the highland of Jeju Island, the succession will progress to the form of Pinus thunbergii (early successional species)→Neolitsea sericea, Eurya japonica (mid-successional species)→Castanopsis sieboldii (late-successional species) sequence in the areas where tidal winds are weak and temperatures are relatively low. However, local differences between lowland and highland of Jeju Island will be caused by the micro-environmental factors resulting from the topographic differences and the supply of tree seeds. From the characteristics of succession study, we could properly predict and manage the Pinus thunbergii forest ecosystem on lowland and highland of Jeju Island.
Background: In this study, the growth and reproductive response of seedlings, grown in plastic pots with sand, to moisture and nutrients were analyzed in order to study the environmental conditions required to create an alternative habitat for Epilobium hirsutum L., an endangered plant. Results: Vegetative and reproductive growths of Epilobium hirsutum L. are accelerated with increase in moisture and organic matter content in the soil. Among vegetative organs, the number of runners related to asexual reproduction was the highest when the moisture content was over 25% and nutrient content between 7 and 14% in the soil. But the number of flowers related to flowering responses, among reproductive organs, was the highest when the moisture content was maintained at 75% and when nutrient content was 21% in the soil. The number of seeds, related to sexual reproduction, was the highest when the moisture content was over 25% and nutrient content between 14 and 21%. Conclusions: The study results show that a place with high moisture and nutrient content in the soil is advantageous to asexual and sexual reproduction of Epilobium hirsutum L. Therefore, we must serve periodically nutrient and seeds to sustain population in in situ conservation. Furthermore, it is advisable to create in riverside where abundant nutrient content have, making alternative habitat of Epilobium hirsutum L. Also, we must find species that have high contribution degree index through vegetation survey.
Background: In this study, we observed their growth and physiological responses using a variety of duty ratio under the mixed light using red, blue, and white lights. The red+blue mixed light was treated with 95%, 90%, 85%, 80%, and 75% duty ratios and red+blue+white mixed light with 85% and 70% duty ratios. We examined the width and length of leaves, total number of leaves, and number of shoots to examine their growth responses. The physiological responses were studied by measuring their photosynthetic rate, transpiration rate, stomatal conductance, water use efficiency, chlorophyll content, and fluorescence (F o , F m , and F v /F m). Results: We found that lower duty ratio caused the length and width of the leaves to grow longer under red+blue mixed light but that it did not cause any difference in the red+blue+white mixed light condition. In addition, there was no difference in the number of leaves and shoots among all treatments. In the red+blue mixed light condition, the photosynthetic rate was no difference, but both transpiration rate and stomatal conductance were the highest at 95% duty ratio than in other ratios. Water use efficiency pattern was similar to that of photosynthetic rate; water use efficiency was no difference. Chlorophyll content was the highest at 95% duty ratios, and it was the least at 90%, 85%, and 75% duty ratio. F o and F m values were relatively high at 85% and 80% duty ratio and low at 90% duty ratio while F v /F m showed no difference. Conclusions: Under the red+blue+white mixed light, all physiological items showed no difference between 70 and 85% treatments. But, photosynthetic rate, water use efficiency, chlorophyll content, and F v /F m were relatively greater in the red+blue+white mixed light than in the red+blue mixed light. Therefore, red+blue+white mixed light treated with 70% duty ratio could lessen the environmental stress and save more power when cultivating Silene capitata in a plant factory.
Background: In order to investigate organic carbon distribution, carbon budget, and cycling of the subalpine forest, we studied biomass, organic carbon distribution, litter production, forest floor litter, accumulated soil organic carbon, and soil respiration in Taxus cuspidata forest in Halla National Park from February 2012 to November 2013. Biomass was calculated by using allometric equation and the value was converted to CO 2 stocks. Results: The amount of plant organic carbon was 13.60 ton C ha
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.