Chromosome 1 of Vibrio vulnificus tends to contain larger portion of essential or housekeeping genes on the basis of the genomic analysis and gene knockout experiments performed in this study, while its chromosome 2 seems to have originated and evolved from a plasmid.The genome-scale metabolic network model of V. vulnificus was reconstructed based on databases and literature, and was used to identify 193 essential metabolites.Five essential metabolites finally selected after the filtering process are 2-amino-4-hydroxy-6-hydroxymethyl-7,8-dihydropteridine (AHHMP), D-glutamate (DGLU), 2,3-dihydrodipicolinate (DHDP), 1-deoxy-D-xylulose 5-phosphate (DX5P), and 4-aminobenzoate (PABA), which were predicted to be essential in V. vulnificus, absent in human, and are consumed by multiple reactions.Chemical analogs of the five essential metabolites were screened and a hit compound showing the minimal inhibitory concentration (MIC) of 2 μg/ml and the minimal bactericidal concentration (MBC) of 4 μg/ml against V. vulnificus was identified.
Recently, deep learning-based methods have drawn increasing attention in hyperspectral imagery (HSI) classification, due to their strong nonlinear mapping capability. However, these methods suffer from a time-consuming training process because of many network parameters. In this paper, the concept of broad learning is introduced into HSI classification. Firstly, to make full use of abundant spectral and spatial information of hyperspectral imagery, hierarchical guidance filtering is performing on the original HSI to get its spectral-spatial representation. Then, the class-probability structure is incorporated into the broad learning model to obtain a semi-supervised broad learning version, so that limited labeled samples and many unlabeled samples can be utilized simultaneously. Finally, the connecting weights of broad structure can be easily computed through the ridge regression approximation. Experimental results on three popular hyperspectral imagery datasets demonstrate that the proposed method can achieve better performance than deep learning-based methods and conventional classifiers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.