Abstract-Applications on cloud infrastructures acquire virtual machines (VMs) from providers when necessary. The current interface for acquiring VMs from most providers, however, is too limiting for the tenants, in terms of granularity in which VMs can be acquired (e.g., small, medium, large, etc.), while giving very limited control over their placement. The former leads to VM underutilization, and the latter has performance implications, both translating into higher costs for the tenants. In this work, we leverage nested virtualization and a networking overlay to tackle these problems. We present Kangaroo, an OpenStack-based virtual infrastructure provider, and IPOPsm, a virtual networking switch for communication between nested VMs over different infrastructure VMs. In addition, we design and implement Skippy, the realization of our proposed virtual infrastructure API for programming Kangaroo. Our benchmarks show that through careful mapping of nested VMs to infrastructure VMs, Kangaroo achieves up to an order of magnitude better performance, with only half the cost on Amazon EC2. Further, Kangaroo's unified OpenStack API allows us to migrate an entire application between Amazon EC2 and our local OpenNebula deployment within a few minutes, without any downtime or modification to the application code.
Virtual private networking (VPN) has become an increasingly important component of a collaboration environment because it ensures private, authenticated communication among participants, using existing collaboration tools, where users are distributed across multiple institutions and can be mobile. The majority of current VPN solutions are based on a centralized VPN model, where all IP traffic is tunneled through a VPN gateway. Nonetheless, there are several use case scenarios that require a model where end-to-end VPN links are tunneled upon existing Internet infrastructure in a peer-to-peer (P2P) fashion, removing the bottleneck of a centralized VPN gateway. We propose a novel virtual network -TinCan -based on peerto-peer private network tunnels. It reuses existing standards and implementations of services for discovery notification (XMPP), reflection (STUN) and relaying (TURN), facilitating configuration. In this approach, trust relationships maintained by centralized (or federated) services are automatically mapped to TinCan links. In one use scenario, TinCan allows unstructured P2P overlays connecting trusted end-user devices -while only requiring VPN software on user devices and leveraging online social network (OSN) infrastructure already widely deployed. This paper describes the architecture and design of TinCan and presents an experimental evaluation of a prototype supporting Windows, Linux, and Android mobile devices. Results quantify the overhead introduced by the network virtualization layer, and the resource requirements imposed on services needed to bootstrap TinCan links.
The Pacific Rim Application and Grid Middleware Assembly (PRAGMA) is an international community of researchers that actively collaborate to address problems and challenges of common interest in eScience. The PRAGMA Experimental Network Testbed (PRAGMA-ENT) was established with the goal of constructing an international software-defined network (SDN) testbed to offer the necessary networking support to the PRAGMA cyberinfrastructure. PRAGMA-ENT is isolated, and PRAGMA researchers have complete freedom to access network resources to develop, experiment, and evaluate new ideas without the concerns of interfering with production networks. In the first phase, PRAGMA-ENT focused on establishing an international L2 backbone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.