The protective mechanism of hypoxic pulmonary vasoconstriction during one-lung ventilation (OLV) is impaired in patients with a low diffusing capacity for carbon monoxide (DLCO). We hypothesized that iloprost inhalation would improve oxygenation and lung mechanics in patients with low DLCO who underwent pulmonary resection. Forty patients with a DLCO < 75% were enrolled. Patients were allocated into either an iloprost group (ILO group) or a control group (n = 20 each), in which iloprost and saline were inhaled, respectively. The partial pressure of arterial oxygen/fraction of inspired oxygen (PaO2/FiO2) ratio, pulmonary shunt fraction, alveolar dead space, dynamic compliance, and hemodynamic parameters were assessed 20 min after the initiation of OLV and 20 min after drug administration. Repeated variables were analyzed using a linear mixed model between the groups. Data from 39 patients were analyzed. After iloprost inhalation, the ILO group exhibited a significant increase in the PaO2/FiO2 ratio and a decrease in alveolar dead space compared with the control group (p = 0.025 and p = 0.042, respectively). Pulmonary shunt, dynamic compliance, hemodynamic parameters, and short-term prognosis were comparable between the two groups. Selective iloprost administration during OLV reduced alveolar dead space and improved oxygenation while minimally affecting hemodynamics and short-term prognosis.
Patients undergoing one-lung ventilation (OLV) in the supine position face an increased risk of intraoperative hypoxia compared with those in the lateral decubitus position. We hypothesized that iloprost (ILO) inhalation improves arterial oxygenation and lung mechanics. Sixty-four patients were enrolled and allocated to either the ILO or control group (n = 32 each), to whom ILO or normal saline was administered. The partial pressure of the arterial oxygen/fraction of inspired oxygen (PaO2/FiO2) ratio, dynamic compliance, alveolar dead space, and hemodynamic variables were assessed 20 min after anesthesia induction with both lungs ventilated (T1) and 20 min after drug nebulization in OLV (T2). A linear mixed model adjusted for group and time was used to analyze repeated variables. While the alveolar dead space remained unchanged in the ILO group, it increased at T2 in the control group (n = 30 each) (p = 0.002). No significant differences were observed in the heart rate, mean blood pressure, PaO2/FiO2 ratio, or dynamic compliance in either group. Selective ILO nebulization was inadequate to enhance oxygenation parameters during OLV in the supine position. However, it favorably affected alveolar ventilation during OLV in supine-positioned patients without adverse hemodynamic effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.