Metal catalysts are generally supported on hard inorganic materials because of their high thermochemical stabilities. Here, we support Pd catalysts on a thermochemically stable but “soft” engineering plastic, polyphenylene sulfide (PPS), for acetylene partial hydrogenation. Near the glass transition temperature (~353 K), the mobile PPS chains cover the entire surface of Pd particles via strong metal-polymer interactions. The Pd-PPS interface enables H2 activation only in the presence of acetylene that has a strong binding affinity to Pd and thus can disturb the Pd-PPS interface. Once acetylene is hydrogenated to weakly binding ethylene, re-adsorption of PPS on the Pd surface repels ethylene before it is further hydrogenated to ethane. The Pd-PPS interaction enables selective partial hydrogenation of acetylene to ethylene even in an ethylene-rich stream and suppresses catalyst deactivation due to coke formation. The results manifest the unique possibility of harnessing dynamic metal-polymer interaction for designing chemoselective and long-lived catalysts.
Abstract-In this paper, we derive an algorithm for enabling a single robotic unmanned aerial vehicle to herd a flock of birds away from a designated volume of space, such as the air space around an airport. The herding algorithm, referred to as the mwaypoint algorithm, is designed using a dynamic model of bird flocking based on Reynolds' rules. We derive bounds on its performance using a combination of reduced-order modeling of the flock's motion, heuristics, and rigorous analysis. A unique contribution of the paper is the experimental demonstration of several facets of the herding algorithm on flocks of live birds reacting to a robotic pursuer. The experiments allow us to estimate several parameters of the flocking model, and especially the interaction between the pursuer and the flock. The herding algorithm is also demonstrated using numerical simulations.
CO2 absorption is a key to alleviating the environmental
consequences of fossil fuel combustion, which is a major source of
global CO2 emission. Membrane contactors have showcased
several competitive advantages in CO2 absorption over conventional
gas–liquid contactors (e.g., packed towers), such as a large
mass-transfer area and a safe operation owing to the membranes that
physically separate the gas and liquid phases. This Review discusses
the state-of-the-art studies related to CO2 absorption
using membrane contactors, with focuses on membrane materials, liquid
absorbents, process design, and pilot-scale demonstration of membrane
contactor processes. Critical challenges in membrane contactor-based
CO2 absorption processes, such as membrane fouling and
pore wetting, are also discussed.
Technology convergence indicates that technologies of different application areas are converted into a new and common unity of technology. Its range spans from inter-field, whereby technologies are converged between heterogeneous fields in homogeneous sector, to a wider inter-sector, whereby technologies belong to heterogeneous technology sector are converged. This paper determined the definition of technology convergence from previous literature and classified patents into technology category depending on patent information. Furthermore, we empirically measure technology convergence degree based on co-classification analysis and estimate its diffusion trend at the entire technology domain level by using overall 1,476,967 of patents filed to the KIPO (Korean Intellectual Property Office) from 1998 to 2010. As a result, potential size and growth rate of technology convergence are varied by both technology and type of technology convergence, i.e., inter-field and inter-sector technology convergence. Diffusion pattern of inter-sector technology convergence appears as the more various form than that of inter-field technology convergence. In a relationship between potential size and growth rate of technology convergence, growth rate of technology convergence is in inverse proportion to potential size of technology convergence in general. That is, the faster the growth rate of technology convergence, the smaller the potential size of technology convergence. In addition, this paper found that technology convergence of the
OPEN ACCESSSustainability 2015, 7 11547 instrument and chemistry sector is actively progressing in both inter-field and inter-sector convergence, while the technologies related to Information and Communication Technology (ICT) in electrical engineering sector have relatively mature progress of technology convergence, especially in inter-sector technology convergence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.